OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 1 — Jan. 1, 2001
  • pp: 36–48

Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts

Matthias Nagorni and Stefan W. Hell  »View Author Affiliations

JOSA A, Vol. 18, Issue 1, pp. 36-48 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (657 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the use of coherent counterpropagating interfering waves to increase threefold to sevenfold the optical bandwidth and the resolution of fluorescence microscopy along the optic axis. Systematic comparison of the point-spread function and the optical transfer function (OTF) for the standing-wave microscope (SWM), the incoherent illumination interference image interference microscope (I5M), and the 4Pi confocal microscope reveals essential differences among their resolution capabilities. It is shown that the OTF’s of these microscopes differ strongly in contiguity and amplitude within the enlarged range of transferred frequencies, and therefore they also differ in their ability to provide data from which interference artifacts can be removed. We demonstrate that for practical aperture angles the production of an interference pattern is insufficient for improving the axial resolution by the expected factor of 3–7. Conditions of the OTF for unambiguous improvement of axial resolution of arbitrary objects are fulfilled not at all in the SWM, partially in the I5M, and fully in the two-photon 4Pi confocal microscope.

© 2001 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(110.4850) Imaging systems : Optical transfer functions
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy
(180.3170) Microscopy : Interference microscopy
(180.6900) Microscopy : Three-dimensional microscopy

Original Manuscript: January 31, 2000
Revised Manuscript: August 7, 2000
Manuscript Accepted: August 7, 2000
Published: January 1, 2001

Matthias Nagorni and Stefan W. Hell, "Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts," J. Opt. Soc. Am. A 18, 36-48 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy,” Opt. Lett. 19, 780–782 (1994). [CrossRef] [PubMed]
  2. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution limit broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97, 8206–8210 (2000). [CrossRef]
  3. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1993).
  4. J. Pawley, Handbook of Biological Confocal Microscopy (Plenum, New York, 1995).
  5. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).
  6. F. Lanni, Applications of Fluorescence in the Biomedical Sciences, 1st ed. (Liss, New York, 1986).
  7. B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature (London) 366, 44–48 (1993). [CrossRef]
  8. S. Hell, E. H. K. Stelzer, “Properties of a 4Pi-confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992). [CrossRef]
  9. S. W. Hell, M. Schrader, H. T. M. van der Voort, “Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range,” J. Microsc. (Oxford) 185, 1–5 (1997). [CrossRef]
  10. M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds., Proc. SPIE2412, 147–156 (1995). [CrossRef]
  11. M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. (Oxford) 195, 10–16 (1999). [CrossRef]
  12. F. Lanni, B. Bailey, D. L. Farkas, D. L. Taylor, “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopy,” Bioimaging 1, 187–192 (1994). [CrossRef]
  13. M. G. L. Gustafsson, “Extended resolution fluorescence microscopy,” Curr. Opin. Struct. Biol. 9, 627–634 (1999). [CrossRef] [PubMed]
  14. M. Gu, C. J. R. Sheppard, “Three-dimensional transfer functions in 4Pi confocal microscopes,” J. Opt. Soc. Am. A 11, 1619–1627 (1994). [CrossRef]
  15. V. Krishnamurthi, B. Bailey, F. Lanni, “Image processing in 3-D standing wave fluorescence microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing III, C. J. Cogswell, G. S. Kino, T. Wilson, eds., Proc. SPIE2655, 18–25 (1996). [CrossRef]
  16. R. Freimann, S. Pentz, H. Hörler, “Development of a standing-wave fluorescence microscope with high nodal plane flatness,” J. Microsc. 187, 193–200 (1997). [CrossRef] [PubMed]
  17. M. Schrader, S. W. Hell, “4Pi-confocal images with axial superresolution,” J. Microsc. (Oxford) 183, 189–193 (1996).
  18. M. Nagorni, S. Hell, “4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution,” J. Struct. Bio. 123, 236–247 (1998). [CrossRef]
  19. K. Bahlmann, S. Jakobs, S. W. Hell, “4Pi-confocal microscopy of live cells,” Ultramicroscopy (to be published).
  20. S. W. Hell, “Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1997), Vol. 5, pp. 361–422.
  21. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  22. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959). [CrossRef]
  23. K. Bahlmann, S. W. Hell, “Polarization effects in 4Pi confocal microscopy studied with water-immersion lenses,” Appl. Opt. 39, 1653–1658 (2000). [CrossRef]
  24. S. W. Hell, E. H. K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93, 277–282 (1992). [CrossRef]
  25. S. W. Hell, M. Schrader, P. E. Hänninen, E. Soini, “Resolving fluorescence beads at 100–200 distance with a two-photon 4Pi-microscope working in the near infrared,” Opt. Commun. 117, 20–24 (1995). [CrossRef]
  26. M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimens,” Biophys. J. 75, 1659–1668 (1998). [CrossRef] [PubMed]
  27. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996), p. 142.
  28. M. Bertero, P. Boccacci, G. J. Brakenhoff, F. Malfanti, H. T. M. Van der Voort, “Three-dimensional image restoration and super-resolution in fluorescence confocal microscopy,” J. Microsc. (Oxford) 157, 3–20 (1990). [CrossRef]
  29. S. W. Hell, M. Nagorni, “4Pi confocal microscopy with alternate interference,” Opt. Lett. 23, 1567–1569 (1998). [CrossRef]
  30. R. Heintzmann, C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 185–195 (1998). [CrossRef]
  31. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. (Oxford) 198, 82–87 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited