OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 1 — Jan. 1, 2001
  • pp: 65–77

Chromatic structure of natural scenes

Thomas Wachtler, Te-Won Lee, and Terrence J. Sejnowski  »View Author Affiliations

JOSA A, Vol. 18, Issue 1, pp. 65-77 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (755 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We applied independent component analysis (ICA) to hyperspectral images in order to learn an efficient representation of color in natural scenes. In the spectra of single pixels, the algorithm found basis functions that had broadband spectra and basis functions that were similar to natural reflectance spectra. When applied to small image patches, the algorithm found some basis functions that were achromatic and others with overall chromatic variation along lines in color space, indicating color opponency. The directions of opponency were not strictly orthogonal. Comparison with principal-component analysis on the basis of statistical measures such as average mutual information, kurtosis, and entropy, shows that the ICA transformation results in much sparser coefficients and gives higher coding efficiency. Our findings suggest that nonorthogonal opponent encoding of photoreceptor signals leads to higher coding efficiency and that ICA may be used to reveal the underlying statistical properties of color information in natural scenes.

© 2001 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.7310) Vision, color, and visual optics : Vision

Original Manuscript: December 1, 1999
Revised Manuscript: July 27, 2000
Manuscript Accepted: July 27, 2000
Published: January 1, 2001

Thomas Wachtler, Te-Won Lee, and Terrence J. Sejnowski, "Chromatic structure of natural scenes," J. Opt. Soc. Am. A 18, 65-77 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. B. Barlow, “Possible principles underlying the transformation of sensory messages,” in Sensory Communication, W. A. Rosenblith, ed. (MIT Press, Cambridge, Mass., 1961), pp. 217–234.
  2. B. A. Olshausen, D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature 381, 607–609 (1996). [CrossRef] [PubMed]
  3. A. J. Bell, T. J. Sejnowski, “The ‘independent components’ of natural scenes are edge filters,” Vision Res. 37, 3327–3338 (1997). [CrossRef]
  4. M. S. Lewicki, B. A. Olshausen, “A probablistic framework for the adaptation and comparison of image codes,” J. Opt. Soc. Am. A 16, 1587–1601 (1999). [CrossRef]
  5. G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983). [CrossRef]
  6. D. L. Ruderman, T. W. Cronin, C.-C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998). [CrossRef]
  7. J. N. Lythgoe, J. C. Partridge, “Visual pigments and the acquisition of visual information,” J. Exp. Biol. 146, 1–20 (1989). [PubMed]
  8. D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds., NATO ASI Series A, Life Sciences, Vol. 203 (Plenum, New York, 1991), pp. 11–22.
  9. D. J. Field, “What is the goal of sensory coding?” Neural Comput. 6, 559–601 (1994). [CrossRef]
  10. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984). [PubMed]
  11. P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990). [PubMed]
  12. T. Wachtler, T. J. Sejnowski, T. D. Albright, “Interactions between stimulus and background chromaticities in macaque primary visual cortex,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S641 (1999).
  13. C. Jutten, J. Herault, “Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture,” Signal Process. 24, 1–10 (1991). [CrossRef]
  14. P. Comon, “Independent component analysis—a new concept?” Signal Process. 36, 287–314 (1994). [CrossRef]
  15. A. J. Bell, T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Comput. 7, 1129–1159 (1995). [CrossRef] [PubMed]
  16. T.-W. Lee, Independent Component Analysis: Theory and Applications (Kluwer Academic, Boston, Mass., 1998).
  17. T.-W. Lee, M. Girolami, T. J. Sejnowski, “Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources,” Neural Comput. 11, 409–433 (1999).
  18. A. Hyvärinen, E. Oja, “A fast fixed-point algorithm for independent component analysis,” Neural Comput. 9, 1483–1492 (1997). [CrossRef]
  19. J. F. Cardoso, “High-order contrasts for independent component analysis,” Neural Comput. 11, 157–192 (1999). [CrossRef] [PubMed]
  20. C. A. Párraga, G. Brelstaff, T. Troscianko, “Color and luminance information in natural scenes,” J. Opt. Soc. Am. A15, 563–569 (1998). ( http://www.crs4.it/∼gjb/ftpJOSA.html ) [CrossRef]
  21. T.-W. Lee, T. Wachtler, T. Sejnowski, “The spectral independent components of natural scenes,” (Institute for Neural Computation, University of California, San Diego, San Diego, Calif., 1999).
  22. M. S. Lewicki, T. J. Sejnowski, “Learning overcomplete representations,” Neural Comput. 12, 337–365 (2000). [CrossRef] [PubMed]
  23. A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A10, 2491–2521 (1993). ( http://www-cvrl.ucsd.edu ) [CrossRef]
  24. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). [CrossRef] [PubMed]
  25. M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997). [CrossRef]
  26. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).
  27. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small number of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986). [CrossRef] [PubMed]
  28. J. Romero, A. Garcia-Beltrán, J. Hernández-Andrés, “Linear basis for representation of natural and artificial illuminants,” J. Opt. Soc. Am. A 14, 1007–1014 (1997). [CrossRef]
  29. C.-C. Chiao, T. W. Cronin, D. Osorio, “Color signals in natural scenes: characteristics of reflectance spectra and effects of natural illuminants,” J. Opt. Soc. Am. A 17, 218–224 (2000). [CrossRef]
  30. M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).
  31. J. D. Mollon, “‘Tho’ she kneel’d in that place where they grew …’: the uses and origins of primate colour vision,” J. Exp. Biol. 146, 21–38 (1989). [PubMed]
  32. D. Osorio, M. Vorobyev, “Colour vision as an adaptation to frugivory in primates,” Proc. R. Soc. London Ser. B 263, 593–599 (1996). [CrossRef]
  33. D. R. Tailor, L. H. Finkel, G. Buchsbaum, “Spatiochromatic independent component filters of natural scenes,” Soc. Neurosci. Abstr. 25, 1935 (1999).
  34. M. S. Lewicki, “A flexible prior for independent component analysis,” Neural Comput. (to be published).
  35. K. Kreutz-Delgado, B. D. Rao, K. Engan, T.-W. Lee, T. J. Sejnowski, “Convex/schurconvex (csc) log-priors and sparse coding,” in 6th Joint Symposium on Neural Computation (Institute for Neural Computation, University of California, San Diego, San Diego, Calif., 1999), Vol. 9, pp. 65–71.
  36. T-W. Lee, M. S. Lewicki, T. J. Sejnowski, “Unsupervised classification with nongaussian mixture models using ica,” in Advances in Neural Information Processing Systems 11 (MIT Press, Cambridge, Mass., 1999), pp. 508–514.
  37. T. Cover, J. Thomas, eds, Elements of Information Theory (Wiley, New York, 1991), Vol. 1.
  38. D. MacKay, “Maximum likelihood and covariant algorithms for independent component analysis,” Report (University of Cambridge, Cavendish Lab, Cambridge, UK, August1996).
  39. B. Pearlmutter, L. Parra, “A context-sensitive generalization of ICA,” in Proceedings of the International Conference on Neural Information Processing (Springer, Singapore, 1996), pp. 151–157.
  40. J-F. Cardoso, “Infomax and maximum likelihood for blind source separation,” IEEE Signal Process. Lett. 4(4), 112–114 (1997). [CrossRef]
  41. S. Amari, “Natural gradient works efficiently in learning,” Neural Comput. 10, 251–276 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited