OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 10 — Oct. 1, 2001
  • pp: 2585–2593

Vector diffraction theory for electromagnetic waves

Arvind S. Marathay and John F. McCalmont  »View Author Affiliations


JOSA A, Vol. 18, Issue 10, pp. 2585-2593 (2001)
http://dx.doi.org/10.1364/JOSAA.18.002585


View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The scalar Huygens–Fresnel principle is reformulated to take into account the vector nature of light and its associated directed electric and magnetic fields. Based on Maxwell’s equations, a vector Huygens secondary source is developed in terms of the fundamental radiating units of electromagnetism: the electric and magnetic dipoles. The formulation is in terms of the vector potential from which the fields are derived uniquely. Vector wave propagation and diffraction formulated in this way are entirely consistent with Huygens’s principle. The theory is applicable to apertures larger than a wavelength situated in dark, perfectly absorbing screens and for points of observation in the right half-space at distances greater than a wavelength beyond the aperture. Alternatively, a formulation in terms of the fields is also developed; it is referred to as a vector Huygens–Fresnel theory. The proposed method permits the determination of the diffracted electromagnetic fields along with the detected irradiance.

© 2001 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization

History
Original Manuscript: October 27, 2000
Revised Manuscript: March 16, 2001
Manuscript Accepted: March 19, 2001
Published: October 1, 2001

Citation
Arvind S. Marathay and John F. McCalmont, "Vector diffraction theory for electromagnetic waves," J. Opt. Soc. Am. A 18, 2585-2593 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-10-2585


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1989), Sec. 8.3.
  2. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 30–76.
  3. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987).
  4. B. B. Baker, E. T. Copson, The Mathematical Theory of Huygens’ Principle, 2nd ed. (Clarendon, Oxford, UK, 1949).
  5. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944). [CrossRef]
  6. K. Miyamoto, E. Wolf, “Generalization of Maggi–Rubinowicz theory of the boundary diffraction wave. I, II,” J. Opt. Soc. Am. 52, 615–625, 626–637 (1962). [CrossRef]
  7. E. W. Marchand, E. Wolf, “Boundary diffraction wave in the domain of the Rayleigh–Kirchhoff diffraction theory,” J. Opt. Soc. Am. 52, 761–767 (1962). [CrossRef]
  8. E. W. Marchand, E. Wolf, “Consistent formulation of Kirchhoff’s diffraction theory,” J. Opt. Soc. Am. 56, 1712–1722 (1966). [CrossRef]
  9. P. Debye, “Das Verhalten von Lichtwellen in der Nahe des Brennpunktes order einer Brennlinie,” Ann. Phys. (Leipzig) 30, 755–776 (1909). [CrossRef]
  10. F. Kottler, “Electromagnetische theorie der Beugung an schwarzen Schirmen,” Ann. Phys. (Leipzig) 71, 457–508 (1923). [CrossRef]
  11. J. A. Stratton, L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939). [CrossRef]
  12. E. Wolf, “Electromagnetic diffraction in optical systems. I,” Proc. R. Soc. London Ser. A 253, 349–357 (1959). [CrossRef]
  13. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [CrossRef]
  14. C.-T. TaiDyadic Green’s Functions in Electromagnetic Theory, 2nd ed. (IEEE Press, Piscataway, N.J., 1994).
  15. B. Karczewski, E. Wolf, “Comparison of three theories of electromagnetic diffraction at an aperture. Part I. Coherence matrices,” J. Opt. Soc. Am. 56, 1207–1214 (1966). [CrossRef]
  16. B. Karczewski, E. Wolf, “Comparison of three theories of electromagnetic diffraction at an aperture. Part II. The far field,” J. Opt. Soc. Am. 56, 1214–1219 (1966). [CrossRef]
  17. T. D. Visser, S. H. Wiersma, “An electromagnetic description of the image formation in confocal fluorescence microscopy,” J. Opt. Soc. Am. A 11, 599–608 (1994). [CrossRef]
  18. G. Bekefi, “Diffraction of electromagnetic waves by an aperture in a large screen,” J. Appl. Phys. 24, 1123–1130 (1953). [CrossRef]
  19. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
  20. J. R. Wait, Electromagnetic Wave Theory (Harper & Row, New York, 1985), pp. 76–195, 225–259.
  21. S. A. Schelkunoff, “Some equivalence theorems of electromagnetics and their application to radiation problems,” Bell Syst. Tech. J., January15, 1936, pp. 99–112 (1936).
  22. S. A. Schelkunoff, Electromagnetic Waves (Van Nostrand, Princeton, N.J., 1943), pp. 331–373.
  23. A. S. Marathay, J. F. McCalmont, “Diffraction of electromagnetic waves. Part I. Theory,” presented at the 1999 Annual Meeting, Optical Society of America, Santa Clara, Calif., September 28, 1999.
  24. J. F. McCalmont, A. S. Marathay, “Diffraction of electromagnetic waves. Part II. Practice,” presented at the 1999 Annual Meeting of the Optical Society of America, Santa Clara, Calif., September 28, 1999.
  25. P. Lorrain, D. R. Corson, F. Lorrain, Electromagnetic Fields and Waves (Freeman, New York, 1988).
  26. R. P. Bocker, B. R. Frieden, “Solution of the Maxwell field equations in vacuum for arbitrary charge and current distribution using matrix algebra,” IEEE Trans. Education 36, 350–356 (1993). [CrossRef]
  27. E. C. Jordan, K. G. Balmain, Electromagnetic Waves and Radiating Systems (Prentice-Hall, New Delhi, 1968).
  28. R. F. Harrington, Time-Harmonic Electromagnetic Fields and Waves (McGraw-Hill, New York, 1961), pp. 1–142.
  29. C. T. A. Johnk, Engineering Electromagnetic Fields and Waves (Wiley, New York, 1975), pp. 592–633.
  30. R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, UK, 1973), Chap. 4, Secs. 4-1 and 4-2.
  31. E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973). [CrossRef]
  32. B. T. Draine, J. Goodman, “Beyond Clausius–Massotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993). [CrossRef]
  33. J. F. McCalmont, “A vector Huygens–Fresnel model of the diffraction of electromagnetic waves,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1999).
  34. E. Yamashita, Analysis Methods for Electromagnetic Wave Problems (Artech House, Boston, Mass., 1990), pp. 177–211.
  35. E. Wolf, “Some recent research on the diffraction of light,” in Proceedings of the Symposium on Modern Optics, New York, March 22–24, Vol. XVII of Microwave Research Institute Symposia Series (Polytechnic Press, Brooklyn, N. Y., 1967), pp. 443–452.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited