Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Role of light intensification by cracks in optical breakdown on surfaces

Not Accessible

Your library or personal account may give you access

Abstract

The intensity distribution of an initially plane light wave incident on planar and conical surface cracks is calculated numerically by using a wave propagation computer code. The results show that light intensity enhancements caused by interference of internal reflections at the crack and the surface are very sensitive to the light polarization, the beam angle of incidence, and the crack geometry (e.g., crack width and orientation with the surface). The light intensity enhancement factor (LIEF) can locally reach 2 orders of magnitude for conical cracks of ideal shape. The electric field direction relative to the crack surfaces determines the light intensity profile around the crack. For normal-incidence illumination on the output surface, total internal reflection at the crack and the surface can occur and leads to higher LIEFs. For identical geometry and illumination conditions, a crack located on the entrance surface of an optic generates electric field enhancements that are weaker than those on the exit surface. As cracks on polished surfaces are randomly oriented, the probability for large intensity enhancements to occur is high. The model is able to predict quantitatively the magnitude of surface laser-induced damage threshold drop and damage propagation enhancement in dielectric materials that are due to cracks.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Distribution of electric field and energy flux around the cracks on the surfaces of Nd-doped phosphate glasses

Lei Zhang, Li Huang, Sijun Fan, Gongxun Bai, Kefeng Li, Wei Chen, and Lili Hu
Appl. Opt. 49(35) 6668-6674 (2010)

Fabrication of spherical mitigation pit on KH2PO4 crystal by micro-milling and modeling of its induced light intensification

Jian Cheng, Mingjun Chen, Wei Liao, Haijun Wang, Yong Xiao, and Mingquan Li
Opt. Express 21(14) 16799-16813 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved