OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 10 — Oct. 1, 2001
  • pp: 2607–2616

Role of light intensification by cracks in optical breakdown on surfaces

F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase  »View Author Affiliations


JOSA A, Vol. 18, Issue 10, pp. 2607-2616 (2001)
http://dx.doi.org/10.1364/JOSAA.18.002607


View Full Text Article

Acrobat PDF (697 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The intensity distribution of an initially plane light wave incident on planar and conical surface cracks is calculated numerically by using a wave propagation computer code. The results show that light intensity enhancements caused by interference of internal reflections at the crack and the surface are very sensitive to the light polarization, the beam angle of incidence, and the crack geometry (e.g., crack width and orientation with the surface). The light intensity enhancement factor (LIEF) can locally reach 2 orders of magnitude for conical cracks of ideal shape. The electric field direction relative to the crack surfaces determines the light intensity profile around the crack. For normal-incidence illumination on the output surface, total internal reflection at the crack and the surface can occur and leads to higher LIEFs. For identical geometry and illumination conditions, a crack located on the entrance surface of an optic generates electric field enhancements that are weaker than those on the exit surface. As cracks on polished surfaces are randomly oriented, the probability for large intensity enhancements to occur is high. The model is able to predict quantitatively the magnitude of surface laser-induced damage threshold drop and damage propagation enhancement in dielectric materials that are due to cracks.

© 2001 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.2750) Materials : Glass and other amorphous materials
(160.6030) Materials : Silica
(220.5450) Optical design and fabrication : Polishing
(240.5450) Optics at surfaces : Polishing
(240.6700) Optics at surfaces : Surfaces
(260.6970) Physical optics : Total internal reflection
(260.7190) Physical optics : Ultraviolet
(290.5880) Scattering : Scattering, rough surfaces
(350.1820) Other areas of optics : Damage

Citation
F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, "Role of light intensification by cracks in optical breakdown on surfaces," J. Opt. Soc. Am. A 18, 2607-2616 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-10-2607


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. Rainer, R. M. Brusasco, J. H. Campbell, F. P. De Marco, R. P. Gonzales, M. R. Kozlowski, F. P. Milanovich, A. J. Morgan, M. S. Scrivener, M. C. Staggs, I. M. Thomas, S. P. Velsko, and C. R. Wolfe, “Damage measurements on optical materials for use in high-peak-power lasers,” in Laser-Induced Damage in Optical Materials 1989, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1438, 74–83 (1990).
  2. A. L. Rigatti and D. J. Smith, “Status of optics on the OMEGA laser after 18 months of operation,” in Laser-Induced Damage in Optical Materials 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2966, 441–450 (1997).
  3. A. L. Rigatti, D. J. Smith, A. W. Schmid, S. Papernov, and J. H. Kelly, “Damage in fused-silica spatial-filter lenses on the OMEGA laser system,” in Laser-Induced Damage in Optical Materials 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 472–479 (1999).
  4. W. L. Smith, “Laser-induced breakdown in optical materials,” Opt. Eng. 17, 489–503 (1978).
  5. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
  6. E. S. Bliss, “Laser-damage mechanisms in transparent dielectrics,” Am. Soc. Test. Mater. Spec. Tech. Publ. 469, 9–20 (1969).
  7. L. L. Chase, “Laser ablation and optical surface damage,” in Laser Ablation, J. C. Miller, ed. (Springer-Verlag, Berlin, 1994), Vol. 28, pp. 53–82.
  8. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661–664 (1973).
  9. N. I. Alekseev, N. V. Volkova, T. V. Stepanova, and L. M. Shestopalov, “Surface damage of lithium fluoride single crystals by laser radiation,” Fiz. Tverd. Tela 11, 2720–2723 (1969).
  10. D. Milam, R. A. Bradbury, R. H. Picard, and M. Baes, “Laser-damage-mechanism identification by the measurement of survival times,” Natl. Bur. Stand. (U.S.) Spec. Publ. 414, 169–178 (1974).
  11. R. M. Wood, R. T. Taylor, and R. L. Rouse, “Laser damage in optical materials at 1.06 μm,” Opt. Laser Technol. 7, 105–111 (1975).
  12. A. J. Glass and A. H. Guenther, “Laser induced damage of optical elements—a status report,” Appl. Opt. 12, 637–649 (1973).
  13. N. L. Boling and G. Dubé, “Morphological asymmetry in laser damage of transparent dielectric surfaces,” Appl. Phys. Lett. 21, 487–489 (1972).
  14. R. A. House, J. R. Bettis, and A. H. Guenther, “Correlation of laser-induced damage with surface structure and preparation techniques of several optical glasses at 1.06 μm,” Natl. Bur. Stand. (U.S.) Spec. Publ. 462, 305–320 (1976).
  15. D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” in Laser-Induced Damage in Optical Materials 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, and M. J. Soileau, eds., Proc. SPIE 3244, 356–364 (1998).
  16. J. Yoshiyama, F. Y. Génin, A. Salleo, I. M. Thomas, M. R. Kozlowski, L. M. Sheehan, I. D. Hutcheon, and D. W. Camp, “Effects of polishing, etching, cleaving, and water leaching on the UV laser damage of fused silica,” in Laser-Induced Damage in Optical Materials 1997, G. J. Exarhos, A. H. Guenther, H. R. Kozlowski, and M. J. Soileau, eds., Proc. SPIE 3244, 331–340 (1998).
  17. J. Hue, J. Dijon, and P. Lyan, “The CMO YAG laser damage test facility,” inLaser-Induced Damage in Optical Materials 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2714, 102–113 (1996).
  18. L. Sheehan, M. Kozlowski, C. Stolz, F. Génin, M. Runkel, S. Schwartz, and J. Hue, “Large area damage testing of optics,” in Laser-Induced Damage in Optical Materials 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2714, 357–369 (1996).
  19. F. Y. Génin, L. M. Sheehan, J. Yoshiyama, J. Dijon, and P. Garrec, “Statistical study of UV-laser-induced failure of fused silica,” in Laser-Induced Damage in Optical Materials 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, and M. J. Soileau, eds., Proc. SPIE 3244, 155–163 (1998).
  20. H. Vora, W. H. Lowdermilk, and J. E. Swain, “Effect of surface finishing on the damage threshold of fused silica at 1.06 μm,” Natl. Bur. Stand. (U.S.) Spec. Publ. 669, 146–150 (1984).
  21. C. R. Giuliano, “Ion beam polishing as a means of increasing surface damage thresholds in sapphire,” Natl. Bur. Stand. (U.S.) Spec. Publ. 372, 55–57 (1972).
  22. N. L. Boling, G. Dubé, and M. D. Crisp, “Laser surface damage studies on several glasses,” Natl. Bur. Stand. (U.S.) Spec. Publ. 387, 69–79 (1973).
  23. J. A. Ringlien, N. L. Boling, and G. Dubé, “An acid treatment for raising the surface damage threshold of laser glass,” Appl. Phys. Lett. 25, 598–600 (1974).
  24. R. A. House, II, J. R. Bettis, and A. H. Guenther, “Efficacy of ion polishing optical surfaces,” Appl. Opt. 16, 1486–1488 (1977).
  25. T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).
  26. M. R. Kozlowski, J. Carr, I. D. Hutcheon, R. Torres, L. M. Sheehan, D. W. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” in Laser-Induced Damage in Optical Materials 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, and M. J. Soileau, eds., Proc. SPIE 3244, 365–375 (1998).
  27. C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” in Laser-Induced Damage in Optical Materials 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 446–455 (1999).
  28. A. Salleo, F. Y. Génin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” in Laser-Induced Damage in Optical Materials 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, and M. J. Soileau, eds., Proc. SPIE 3244, 341–347 (1998).
  29. P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21, 3249–3255 (1982).
  30. P. A. Temple, S. C. Seitel, and D. L. Cate, “CO2 laser polishing of fused silica:recent progress,” Natl. Bur. Stand. (U.S.) Spec. Publ. 669, 130–137 (1984).
  31. N. C. Kerr and D. C. Emmony, “The effect of laser annealing on laser-induced damage threshold,” J. Mod. Opt. 37, 787–802 (1990).
  32. P. A. Temple, D. Milam, and W. H. Lowdermilk, “CO2-laser polishing of fused silica surfaces for increased laser damage resistance at 1.06 μm,” Natl. Bur. Stand. (U.S.) Spec. Publ. 620, 229–236 (1981).
  33. F. Rainer and E. A. Hildum, “Review of UV laser damage measurements at Lawrence Livermore National Laboratory,” NIST (Natl. Inst. Stand. Technol.) Spec. Publ. 756, 74–84 (1988).
  34. L. D. Merkle and D. Kitriotis, “Temperature dependence of laser-induced bulk damage in SiO2 and borosilicate glass,” Phys. Rev. B 38, 1473–1482 (1988).
  35. A. A. Griffith, Philos. Trans. R. Soc. London Ser. A 221, 163 (1921).
  36. J. C. Lambropoulos, B. E. Gillman, Z. Yiyang, S. D. Jacobs, and H. J. Stevens, “Glass-ceramics: deterministic microgrinding, lapping, and polishing,” in Optical Manufacturing and Testing II, H. Stahl, ed., Proc. SPIE 3134, 178–189 (1997).
  37. B. Lawn and R. Wilshaw, “Review, indentation fracture: principles and applications,” J. Mater. Sci. 10, 1049–1081 (1975).
  38. B. R. Lawn, “Indentation fractography,” in Fractography of Glass, R. C. Bradt and R. E. Tressler, eds. (Plenum, New York, 1994).
  39. T. J. Magee, C. S. Leung, F. D. J. Orazio, J. D. Boyer, B. R. Mauro, and V. E. Sanders, “The effect of subsurface defects on ‘incipient’ (below threshold) laser damage nucleation in fused silica optical flats,” in Laser-Induced Damage in Optical Materials 1989, H. E. Bennett, L. L. Chase, H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1438, 230–238 (1989).
  40. A. A. Tesar, N. J. Brown, J. R. Taylor, and C. J. Stolz, “Subsurface polishing damage of fused silica: nature and effect on laser damage of coated surfaces,” in Laser-Induced Damage in Optical Materials 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1441, 154–172 (1991).
  41. M. J. Cumbo, D. Fairhurst, S. D. Jacobs, and B. E. Puchebner, “Slurry particle size evolution during the polishing of optical glass,” Appl. Opt. 34, 3743–3755 (1995).
  42. T. V. Pistor, “Generalizing the TEMPEST FDTD electromagnetic simulation program,” M.S. thesis (University of California, Berkeley, California, 1997).
  43. J. Gamelin, “Simulation of topography scattering for optical lithography with the connection machine,” M. S. thesis (University of California, Berkeley, California, 1989).
  44. R. Guerrieri, K. H. Tadros, J. Gamelin, and A. Neureuther, “Massively parallel algorithms for scattering in optical lithography,” IEEE Trans. Comput.-Aided Des. 10, 1091–1100 (1994).
  45. S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited