OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 11 — Nov. 1, 2001
  • pp: 2767–2777

Inverse scattering with diffusing waves

John C. Schotland and Vadim A. Markel  »View Author Affiliations


JOSA A, Vol. 18, Issue 11, pp. 2767-2777 (2001)
http://dx.doi.org/10.1364/JOSAA.18.002767


View Full Text Article

Acrobat PDF (587 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider the problem of imaging the optical properties of a highly scattering medium probed by diffuse light. An analytic solution to this problem is derived from the singular value decomposition of the forward-scattering operator, which leads to explicit inversion formulas for the inverse scattering problem with diffusing waves. Computer simulations are used to illustrate these results in model systems.

© 2001 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering

Citation
John C. Schotland and Vadim A. Markel, "Inverse scattering with diffusing waves," J. Opt. Soc. Am. A 18, 2767-2777 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-11-2767


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. van der Zee, eds., Medical Optical Tomography: Functional Imaging and Monitoring (SPIE Press, Bellingham, Wash., 1993).
  2. R. R. Alfano and J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).
  3. B. Chance and R. R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, Proc. SPIE 2389 (1995).
  4. B. Chance and R. R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue and Model Media: Theory, Instrumentation, and Human Studies II, Proc. SPIE 2949 (1997).
  5. B. Chance, R. R. Alfano, and B. Tromberg, eds, Optical Tomography and Spectroscopy of Tissue III, Proc. SPIE 3597, (1999).
  6. M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
  7. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
  8. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
  9. D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
  10. A. Rebane and J. Feinberg, “Time-resolved holography,” Nature (London) 351, 378–380 (1991).
  11. K. M. Yoo, F. Liu, and R. R. Alfano, “Imaging objects hidden in scattering media using an absorption technique,” Opt. Lett. 16, 1068–1070 (1991).
  12. E. Leith, H. Chen, Y. Chen, D. Dilworth, J. Lopez, R. Masri, J. Rudd, and J. Valdmanis, “Electronic holography and speckle methods for imaging through tissue using femtosecond gated pulses,” Appl. Opt. 30, 4204–4210 (1991).
  13. E. N. Leith, B. G. Hoover, D. S. Dilworth, and P. P. Naulleau, “Ensemble-averaged Shack–Hartmann wavefront sensing for imaging through turbid media,” Appl. Opt. 37, 3643–3650 (1998).
  14. J. R. Singer, F. A. Grunbaum, P. Kohn, and J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990).
  15. S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, “New results for the development of infrared absorption imaging,” in Biomedical Image Processing, A. C. Bovik and W. E. Higgins, eds., Proc. SPIE 1245, 92–103 (1991).
  16. R. L. Barbour, H. L. Graber, R. Aronson, and J. Lubowsky, “Imaging of subsurface regions of random media by remote sensing,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance and A. Katzin, eds., Proc. SPIE 1431, 192–203 (1991).
  17. J. Schotland and J. Leigh, “Photon diffusion imaging,” Biophys. J. 61, 446 (1992).
  18. C. P. Gonatas, M. Ishii, J. S. Leigh, and J. C. Schotland, “Optical diffusion imaging using a direct inversion method,” Phys. Rev. E 52, 4361–4365 (1995).
  19. M. Ishii, J. Leigh, and J. Schotland, “Photon diffusion imaging of model and biological systems,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human, Studies, and Instrumentation, B. Chance and R. R. Alfano, eds., Proc. SPIE 2389, 312–317 (1995).
  20. M. O’Leary, D. Boas, B. Chance, and A. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing photon tomography,” Opt. Lett. 20, 426–429 (1995).
  21. J. C. Schotland, “Continuous wave diffusion imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997).
  22. X. D. Li, T. Durduran, A. Yodh, B. Chance, and D. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse photon density waves,” Opt. Lett. 22, 573 (1997).
  23. C. Matson, “A diffraction tomographic model of the forward problem using photon density waves,” Opt. Express 1, 6–11 (1997).
  24. F. Natterer, The Mathematics of Computerized Tomography (Wiley, New York, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited