OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 11 — Nov. 1, 2001
  • pp: 2806–2818

Polarization eccentricity of the transverse field for modes in chiral core planar waveguides

Warren N. Herman  »View Author Affiliations


JOSA A, Vol. 18, Issue 11, pp. 2806-2818 (2001)
http://dx.doi.org/10.1364/JOSAA.18.002806


View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The general solution for modes in an asymmetric planar waveguide with a homogeneous and isotropic chiral core is given in terms of a pair of parameters related to the eccentricity of the polarization ellipse for the transverse electric field. This formulation provides insight into the transition, with increasing chirality of the core, from TE/TM modes to right-handed and left-handed circular polarization modes. Mode polarization as a function of waveguide thickness and of frequency is discussed in detail. Beyond a mode-dependent maximum thickness (or frequency), the left-handed elliptical modes consist of a slow-wave component whose cutoff properties are examined. The limiting case of a symmetric waveguide is also discussed.

© 2001 Optical Society of America

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(250.5460) Optoelectronics : Polymer waveguides
(310.2790) Thin films : Guided waves

History
Original Manuscript: November 9, 2000
Revised Manuscript: March 21, 2001
Manuscript Accepted: April 23, 2001
Published: November 1, 2001

Citation
Warren N. Herman, "Polarization eccentricity of the transverse field for modes in chiral core planar waveguides," J. Opt. Soc. Am. A 18, 2806-2818 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-11-2806


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Jaggard, A. R. Mickelson, C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. 18, 211–216 (1979). [CrossRef]
  2. A. Lahtakia, V. K. Varadan, V. V. Varadan, Time-Harmonic Electromagnetic Fields in Chiral Media, Lecture Notes in Physics Series 335 (Springer-Verlag, Berlin, 1989).
  3. N. Engheta, D. L. Jaggard, “Electromagnetic chirality and its applications,” IEEE Antennas Propag. Soc. Newsl. 30, 6–12 (1988). [CrossRef]
  4. V. K. Varadan, A. Lakhtakia, V. V. Varadan, “Propagation in a parallel plate waveguide wholly filled with a chiral medium,” J. Wave Mater. Interact. 3, 267–272 (1988).
  5. N. Engheta, P. Pelet, “Modes in chirowaveguides,” Opt. Lett. 14, 593–595 (1989). [CrossRef] [PubMed]
  6. P. Pelet, N. Engheta, “The theory of chirowaveguides,” IEEE Trans. Antennas Propag. 38, 90–98 (1990). [CrossRef]
  7. L. Zhang, Y. Jiao, C. Liang, “The dominant mode on parallel-plate chirowaveguides,” IEEE Trans. Microwave Theory Tech. 42, 2009–2012 (1994). [CrossRef]
  8. See, for example, A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Sec. 4.9.
  9. For a recent review, see M. M. Green, J.-W. Park, T. Sato, S. Lifson, R. L. B. Selinger, J. V. Selinger, Angew. Chem. Int. Ed. Engl. 38, 3138–3154 (1999). [CrossRef] [PubMed]
  10. Highly chiral oligomers have been realized, for example, in metallocenes [T. J. Katz, A. Sadhakar, M. F. Teasley, A. M. Gilbert, W. E. Geiger, M. P. Robben, M. Wuensch, M. D. Ward, “Synthesis and properties of optically active helical metallocene oligomers,” J. Am. Chem. Soc. 115, 3182–3198 (1993)], but additional requirements of low optical loss and incorporation into polymers with good film-forming properties must be met. [CrossRef]
  11. M. Chien, Y. Kim, H. Grebel, “Mode conversion in optically active and isotropic waveguides,” Opt. Lett. 14, 826–828 (1989). [CrossRef] [PubMed]
  12. H. Corey, I. Rosenhouse, “Electromagnetic wave propagation along a chiral slab,” IEE Proc. H, 138, 51–54 (1991).
  13. M. Oksanen, P. K. Loivisto, L. V. Lindell, “Dispersion curves and fields for a chiral slab waveguide,” IEE Proc. H 138, 327–334 (1991).
  14. M. I. Oksanen, P. V. Koivisto, S. A. Tretyakov, “Vector circuit method applied for chiral slab waveguides,” J. Lightwave Technol. 10, 150–155 (1992). [CrossRef]
  15. J. Xiao, K. Zhang, L. Gong, “Field analysis of a general chiral planar waveguide,” Int. J. Infrared Millim. Waves 18, 939–948 (1997). [CrossRef]
  16. S. F. Mahmoud, “Guided modes on open chirowaveguides,” IEEE Trans. Microwave Theory Tech. 43, 205–209 (1995). [CrossRef]
  17. K. M. Flood, D. L. Jaggard, “Single-mode operation in symmetric planar waveguides using isotropic chiral media,” Opt. Lett. 21, 474–476 (1996). [CrossRef] [PubMed]
  18. S. Yamamoto, Y. Koyamada, T. Makimoto, “Normal-mode analysis of anisotropic and gyrotropic thin-film devices for integrated optics,” J. Appl. Phys. 43, 5090–5097 (1972). [CrossRef]
  19. P. Pelet, N. Engheta, “Coupled-mode theory for chiral waveguides,” J. Appl. Phys. 67, 2742–2745 (1990). [CrossRef]
  20. M. I. Oksanen, S. A. Tretyakov, I. V. Lindell, “Vector circuit theory for isotropic and chiral slabs,” J. Electromagn. Waves Appl. 4, 613–643 (1990).
  21. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Norwood, Mass., 1994), Chap. 4.
  22. S. V. Demidov, K. V. Kushnarev, V. V. Shevchenko, “Dispersion properties of the modes of chiral planar optical waveguides,” J. Commun. Technol. Electron. 44, 827–832 (1999) [translated from Radiotekh. Elektron. (Moscow) 44, 885–890 (1999)].
  23. For a discussion of various forms for chiral constitutive equations, see Ref. 2, Chap. 3 and Ref. 21, Chap. 1.
  24. C. F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett. 29, 458–462 (1974) and“Scattering of electromagnetic waves by an optically active spherical shell,” J. Chem. Phys. 62, 1566–1571 (1975). See also the discussion in Ref. 2, Chap. 7. [CrossRef]
  25. Here we adopt the convention for circularly polarized light used in most optics texts: For RHC (LHC) polarization, the electric field at a fixed position rotates clockwise (counterclockwise) when viewed from the direction toward which the wave is traveling. The opposite designation is used in much of the engineering literature, including Refs. 12-14 cited here. For a discussion, see B. E. A. Salah, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Sec. 6.1.
  26. C. R. Paiva, A. L. Topa, A. M. Barbosa, “Semileaky waves in dielectric chirowaveguides,” Opt. Lett. 17, 1670–1672 (1992). [CrossRef] [PubMed]
  27. See, for example, P. K. Cheo, Fiber Optics and Optoelectron-ics, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1990), Chap. 3.
  28. Solutions for all examples in this paper were obtained by using built-in routines in Mathcad 2000 Professional (MathSoft, Inc., Cambridge, Mass.).
  29. The TE- and TM-mode equations are normally written by using arctangent rather than arccotangent. However, the arguments of the arctangent are positive definite, and arctan x=arccot(1/x) for x>0,as is true for the achiral case. There is an advantage to using arccotangent in the chiral case because singularities of the argument cause π discontinuities of arccotangent at only the endpoints of the range |g|<1,while if arctangent is used, there are π discontinuities at g=±r0 inside this range.
  30. This merging of effective index curves was first noted in Ref. 12 without discussion of the polarization effects.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited