## Noniterative calculation of complex propagation constants in planar waveguides

JOSA A, Vol. 18, Issue 11, pp. 2819-2822 (2001)

http://dx.doi.org/10.1364/JOSAA.18.002819

Acrobat PDF (123 KB)

### Abstract

We adapt an efficient finite-difference procedure for determining complex propagation constants to the analysis of modes in planar waveguides. The method requires solving a single rather than multiple eigenvalue equations and does not require prior knowledge of either the nature of the solutions or the position of the modal eigenvalues in the complex plane.

© 2001 Optical Society of America

**OCIS Codes**

(130.2790) Integrated optics : Guided waves

(230.7390) Optical devices : Waveguides, planar

(230.7400) Optical devices : Waveguides, slab

**Citation**

Raymond Z. L. Ye and David O. Yevick, "Noniterative calculation of complex propagation constants in planar waveguides," J. Opt. Soc. Am. A **18**, 2819-2822 (2001)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-11-2819

Sort: Year | Journal | Reset

### References

- S. M. Saad, “Review of numerical methods for the analysis of arbitrarily-shaped microwave and optical dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-33, 894–899 (1985).
- K. S. Chiang, “Review of numerical and approximate methods for the analysis of general optical dielectric waveguides,” Opt. Quantum Electron. 26, S113–S134 (1994).
- E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
- J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguide,” J. Opt. Soc. Am. A 1, 742–753 (1984).
- L. M. Walpita, “Solutions for planar optical waveguide equations by selecting zero elements in a characteristic matrix,” J. Opt. Soc. Am. A 2, 595–602 (1985).
- K.-H. Schlereth and M. Tacke, “The complex propagation constant of multilayer waveguide: an algorithm for a personal computer,” IEEE J. Quantum Electron. 26, 627–630 (1990).
- C. A. Hulse and A. Knoesen, “Iterative calculation of complex propagation constants of modes in multilayer planar waveguides,” IEEE J. Quantum Electron. 28, 2682–2684 (1992).
- R. E. Smith, S. N. Houde-Walter, and G. W. Forbes, “Mode determination for planar waveguides using the four-sheeted dispersion relation,” IEEE J. Quantum Electron. 28, 1520–1526 (1992).
- R. E. Smith, G. W. Forbes, and S. N. Houde-Walter, “Unfolding the multivalued planar waveguide dispersion relation,” IEEE J. Quantum Electron. 29, 1031–1034 (1993).
- E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Efficient solution of eigenvalue equations of optical waveguiding structures,” J. Lightwave Technol. 12, 2080–2084 (1994).
- E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method,” J. Lightwave Technol. 17, 929–941 (1999).
- M. S. Stern, “Semivectorial polarised finite difference method for optical waveguide with arbitrary index profiles,” IEE Proc. J. 135, 56–63 (1988).
- A. Dela⁁ge, “Modelling of semiconductor rib wave guides by a finite difference method,” Can. J. Phys. 69, 512–519 (1991).
- G. R. Hadley and R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,” J. Lightwave Technol. 13, 465–469 (1995).
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992), Chap. 11.

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.