OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 11 — Nov. 1, 2001
  • pp: 2833–2845

Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach

Peter T. C. So, Hyuk-Sang Kwon, and Chen Y. Dong  »View Author Affiliations

JOSA A, Vol. 18, Issue 11, pp. 2833-2845 (2001)

View Full Text Article

Acrobat PDF (274 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The theoretical basis for resolution enhancement in standing-wave total internal reflection microscopy (SW-TIRM) is examined. This technique relies on the formation of an excitation field containing super-diffraction-limited spatial-frequency components. Although the fluorescence generated at the object planes contains high-frequency information of the object distribution, this information is lost at the image plane, where the detection optics acts as a low-pass filter. From the perspective of point-spread-function (PSF) engineering, one can show that if this excitation field is translatable experimentally, the high-frequency information can be extracted from a set of images where the excitation fields have different displacement vectors. We have developed algorithms to combine this image set to generate a composite image with an effective PSF that is equal to the product of the excitation field and the Fraunhofer PSF. This approach can easily be extended to incorporate nonlinear excitation modalities into SW-TIRM for further resolution improvement. We theoretically examine high-resolution imaging based on the addition of two-photon, pump–probe, and stimulated-emission depletion methods to SW-TIRM and show that resolution better than 1/20 of the emission wavelength may be achievable.

© 2001 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(190.4180) Nonlinear optics : Multiphoton processes
(260.6970) Physical optics : Total internal reflection

Peter T. C. So, Hyuk-Sang Kwon, and Chen Y. Dong, "Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach," J. Opt. Soc. Am. A 18, 2833-2845 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. Binning, C. F. Quante, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 12, 930–933 (1986).
  2. G. Binning and H. Rohrer, “Scanning tunneling microscopy,” IBM J. Res. Dev. 30, 355 (1986).
  3. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostalak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1469–1470 (1991).
  4. R. C. Dunn, G. R. Holtom, L. Mets, and X. S. Xie, “Near-field fluorescence imaging and fluorescence lifetime measurement of light harvesting complexes in intact photosynthetic membranes,” J. Phys. Chem. 98, 3094–3098 (1994).
  5. V. Subramaniam, A. K. Kirsch, and T. M. Jovin, “Cell biological applications of scanning near-field optical microscopy (SNOM),” Cell Mol. Biol. 44, 689–700 (1998).
  6. A. K. Kirsch, V. Subramaniam, G. Striker, C. Schnetter, D. J. Arndt-Jovin, and T. M. Jovin, “Continuous wave two-photon scanning near-field optical microscopy,” Biophys. J. 75, 1513–1521 (1998).
  7. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).
  8. T. Wilson, Confocal Microscopy (Academic, London, 1990).
  9. J. B. Pawley, ed., Handbook of Confocal Microscopy (Plenum, New York, 1995).
  10. B. R. Masters, Selected Papers on Confocal Microscopy (SPIE Press, Bellingham, 1996).
  11. S. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992).
  12. S. Hell, W. S. Lindek, and E. H. K. Stelzer, “Enhancing the axial resolution in far-field light microscopy: two-photon 4Pi confocal fluorescence microscopy,” J. Mod. Opt. 41, 675–681 (1994).
  13. P. E. Haenninen, S. W. Hell, J. Salo, and E. Soini, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698 (1995).
  14. M. Schrader, M. Kozubek, S. W. Hell, and T. Wilson, “Opti-cal transfer functions of 4Pi confocal microscopes: theory and experiment,” Opt. Lett. 22, 436–438 (1997).
  15. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
  16. W. J. Denk, D. W. Piston, and W. W. Webb, “Two-photon molecular excitation laser-scanning microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), pp. 445–458.
  17. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2, 399–429 (2000).
  18. C. Y. Dong, P. T. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophys. J. 69, 2234–2242 (1995).
  19. C. Y. Dong, P. T. C. So, Ch. Buehler, and E. Gratton, “Spatial resolution in scanning pump-probe fluorescence microscopy,” Optik 106, 7–14 (1997).
  20. Ch. Buehler, C. Y. Dong, P. T. C. So, T. French, and E. Gratton, “Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy,” Biophys. J. 79, 536–549 (2000).
  21. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
  22. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24, 954–956 (1999).
  23. M. Dyba, T. A. Klar, S. Jakobs, and S. W. Hell, “Ultrafast dynamics microscopy,” Appl. Phys. Lett. 77, 597–599 (2000).
  24. G. Cragg and P. T. C. So, “Standing-wave total internal reflection microscopy,” Opt. Lett. 25, 46–48 (2000).
  25. J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. USA 97, 7232–7236 (2000).
  26. B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
  27. V. Krishnamurthi, B. Bailey, and F. Lanni, “Imaging processing in 3-D standing-wave fluroescence microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing III, C. J. Cogswell, G. Kino, and T. Wilson, eds., Proc. SPIE 2655, 18–25 (1996).
  28. G. E. Cragg and P. T. C. So, “Standing wave total internal reflection microscopy—breaking the diffraction resolution limit,” Biophys. J. 78, 248a (2000).
  29. P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1991).
  30. C. Xu, J. Guild, W. W. Webb, and W. Denk, “Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation,” Opt. Lett. 20, 2372–2374 (1995).
  31. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. USA 93, 10763–10768 (1996).
  32. P. T. C. So, C. Y. Dong, K. M. Berland, T. French, and E. Gratton, “Time-resolved stimulated-emission and absorption microscopy,” in Topics in Fluorescence V, J. R. Lakowicz, ed., (Plenum, New York, 1998), 427–469.
  33. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. R. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited