OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 12 — Dec. 1, 2001
  • pp: 3007–3017

Mission-driven evaluation of imaging system quality

Alain Philippe Kattnig, Ouamar Ferhani, and Jérôme Primot  »View Author Affiliations

JOSA A, Vol. 18, Issue 12, pp. 3007-3017 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (598 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Image-quality criteria are usually intended to achieve the best possible image at a given sampling rate, which is ill-suited to applications where the detection of well-defined geometric and radiometric properties of scenes or objects are paramount. The quality criterion developed here for designing observation systems is based on properties of the objects to be viewed. It is thus an object-oriented imaging quality criterion rather than an image-oriented one. We also propose to go beyond optimization and calibrate a numerical scale that can be used to rate the quality of the service delivered by any observation system.

© 2001 Optical Society of America

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(110.4100) Imaging systems : Modulation transfer function
(110.4280) Imaging systems : Noise in imaging systems
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(330.1880) Vision, color, and visual optics : Detection

Original Manuscript: January 15, 2001
Revised Manuscript: April 9, 2001
Manuscript Accepted: April 23, 2001
Published: December 1, 2001

Alain Philippe Kattnig, Ouamar Ferhani, and Jérôme Primot, "Mission-driven evaluation of imaging system quality," J. Opt. Soc. Am. A 18, 3007-3017 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980).
  2. P. Z. Mouroulis, H. Zhang, “Visual instrument image quality metrics and the effects of coma and astigmatism,” J. Opt. Soc. Am. A 9, 34–42 (1992). [CrossRef] [PubMed]
  3. P. Z. Mouroulis, X. Cheng, “Visual instrument image-quality assessment with rotationally symmetric difference of Gaussians,” Appl. Opt. 36, 1667–1670 (1997). [CrossRef] [PubMed]
  4. E. M. Granger, K. N. Cupery, “An optical merit function (SQF), which correlates with subjective image judgments,” Photograph. Sci. Eng. 16, 221–230 (1972).
  5. H. L. Snyder, “Modulation transfer function area as a measure of image quality,” presented at the Visual Search Symposium of the Committee on Vision at the National Academy of Sciences, Washington, D.C., 1970.
  6. A. van Meeteren, “Visual aspects of image intensification,” Ph.D. dissertation (University of Utrecht, Utrecht, The Netherlands, 1973).
  7. P. G. Barten, “Evaluation of subjective image quality with the square-root integral method,” J. Opt. Soc. Am. A 7, 2024–2031 (1990). [CrossRef]
  8. A. van der Schaaf, J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vision Res. 36, 2759–2770 (1996). [CrossRef] [PubMed]
  9. F. O. Huck, R. Alter-Gartenberg, Z. Rahman, “Image gathering and digital restoration for fidelity and visual quality,” CVGIP Graph. Models Image Process. 53, 71–84 (1991). [CrossRef]
  10. S. K. Park, Z. Rahman, “Fidelity analysis of sampled imaging systems,” Opt. Eng. 38, 786–800 (1999). [CrossRef]
  11. C. L. Fales, F. O. Huck, R. W. Samms, “Imaging system design for improved information capacity,” Appl. Opt. 23, 872–888 (1984). [CrossRef] [PubMed]
  12. F. O. Huck, C. L. Fales, R. Alter-Gartenberg, S. K. Park, Z. Rahman, “Information-theoretic assessment of sampled imaging systems,” Opt. Eng. 38, 742–762 (1999). [CrossRef]
  13. C. R. Carlson, R. W. Cohen, “A simple psychophysical model for predicting the visibility of displayed information,” in SID Digest (Society for Information Display, Santa Ana, Calif.1980), Vol. 21/3, pp. 229–246.
  14. A. B. Watson, ed., Digital Images and Human Vision (MIT Press, Cambridge, Mass., 1993).
  15. A. B. Watson, “DCT quantization matrices visually optimized for individual images,” in Human Vision, Visual Processing, and Digital Display IV, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE1913, 202–216 (1993). [CrossRef]
  16. A. B. Watson, Joshua A. Solomon, “Model of visual contrast gain control and pattern masking,” J. Opt. Soc. Am. A 14, 2379–2391 (1997). [CrossRef]
  17. A. B. Watson, R. Borthwick, M. Taylor, “Image quality and entropy masking,” in Human Vision and Electronic Imaging II, B. E. Roqowitz, T. N. Pappas, eds., Proc. SPIE3016, 2–12 (1997). [CrossRef]
  18. PQA300: Picture Quality Analysis System, TEKTRONIX, http://www.tektronix.com/ .
  19. J. Lubin, M. Brill, R. Crane, “Vision model-based assessment of distortion magnitudes in digital video,” http://www.mpeg.org/MPEG/JND .
  20. Alan V. Oppenheim, Ronald W. Schafer, John R. Buck, Discrete Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1999).
  21. P. B. Fellget, E. H. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London 247, 369–407 (1955). [CrossRef]
  22. H. C. Andrews, B. R. Hunt, Digital Image Restoration (Prentice-Hall, Englewood Cliffs, N.J., 1977).
  23. R. C. Gonzalez, P. Wintz, Digital Image Processing (Addison-Wesley, Reading, Mass., 1977).
  24. C. L. Fales, F. O. Huck, J. A. McCormick, S. K. Park, “Wiener restoration of sampled image data: end-to-end analysis,” J. Opt. Soc. Am. A 5, 300–314 (1988). [CrossRef]
  25. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987). [CrossRef] [PubMed]
  26. D. J. Field, “Scale-invariance and self-similar ‘wavelet’ transforms: an analysis of natural scenes and mammalian visual systems,” in Wavelets, Fractals, and Fourier Transforms, M. Farge, J. C. Hunt, J. C. Vassilicos, eds. (Clarendon, Oxford, UK, 1993).
  27. G. J. Burton, I. R. Moorhead, “Color and spatial structure in natural scenes,” Appl. Opt. 26, 157–170 (1987). [CrossRef] [PubMed]
  28. D. L. Ruderman, “The statistics of natural images,” Network 5, 517–548 (1994). [CrossRef]
  29. STANAG 3769 (about the minimal resolution needed for photographic interpretation), NATO Standardization Agreements (NATO, Brussels, year unknown).
  30. Imagery Resolution Assessments and Reporting (IRARS) Committee, “National imagery interpretability rating scale (NIIRS),” http://www.fas.org/irp/imint/niirs_c/guide.htm .
  31. J. C. Leachtenauer, W. Malila, J. Irvine, L. Colburn, N. Salvaggio, “General image-quality equation: GIQE,” Appl. Opt. 36, 8322–8328 (1997). [CrossRef]
  32. C. L. Fales, F. O. Huck, R. W. Samms, “Imaging system design for improved information capacity,” Appl. Opt. 23, 872–888 (1984). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited