OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 12 — Dec. 1, 2001
  • pp: 3072–3076

Theoretical and experimental investigation of the extinction in a dense distribution of particles: nonlocal effects

Laurent Hespel, Stéphane Mainguy, and Jean-Jacques Greffet  »View Author Affiliations


JOSA A, Vol. 18, Issue 12, pp. 3072-3076 (2001)
http://dx.doi.org/10.1364/JOSAA.18.003072


View Full Text Article

Acrobat PDF (207 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report experimental measurements of the extinction in a suspension of dielectric spheres. We find that the model originally introduced by Keller is in good agreement with the data provided that nonlocal effects are properly taken into account. We also find that the simple criterion establishing the regime of independent scattering previously introduced is not consistent with our data.

© 2001 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(290.0290) Scattering : Scattering
(290.1990) Scattering : Diffusion
(290.2200) Scattering : Extinction
(290.5820) Scattering : Scattering measurements
(350.4990) Other areas of optics : Particles

Citation
Laurent Hespel, Stéphane Mainguy, and Jean-Jacques Greffet, "Theoretical and experimental investigation of the extinction in a dense distribution of particles: nonlocal effects," J. Opt. Soc. Am. A 18, 3072-3076 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-12-3072


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. U. Frisch, “Wave propagation in random media,” in Probabilistic Methods in Applied Mathematics, A. Bharucha-Reid, ed. (Academic, New York, 1968), pp. 75–198.
  2. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1982).
  3. L. Tsang and J. A. Kong, “Effective propagation constant for coherent electromagnetic wave propagation in media embedded with dielectric scatterers,” J. Appl. Phys. 53, 7162–7173 (1982).
  4. R. West, D. Gibbs, L. Tsang, and A. K. Fung, “Comparison of optical scattering experiments and the quasi-crystalline approximation for dense media,” J. Opt. Soc. Am. A 11, 1834–1838 (1994).
  5. A. Nashashibi and K. Sarabandi, “Experimental characterization of the effective propagation constant of dense random media,” IEEE Trans. Antennas Propag. 47, 1454–1462 (1999).
  6. L. M. Zurk, L. Tsang, K. H. Ding, and D. P. Winnebrenner, “Monte-Carlo simulations of the extinction rate of densely packed spheres with clustered and nonclustered geometries,” J. Opt. Soc. Am. A 12, 1772–1781 (1995).
  7. L. Tsang, C. E. Mandt, and K. H. Ding, “Monte-Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell equations,” Opt. Lett. 47, 314–317 (1992).
  8. P. R. Siqueira and K. Sarabandi, “Method of moment evaluation of the two-dimensional quasi-crystalline approximation,” IEEE Trans. Antennas Propag. 44, 1067–1096 (1996).
  9. K. Sarabandi and P. R. Siqueira, “Numerical scattering analysis for two-dimensional dense random media: characterization of effective permittivity,” IEEE Trans. Antennas Propag. 45, 858–867 (1997).
  10. P. R. Siqueira and K. Sarabandi, “T-matrix determination of effective permittivity for three-dimensional dense random media,” IEEE Trans. Antennas Propag. 48, 317–327 (2000).
  11. J. K. Percus and G. J. Yevick, “Analysis of classical statistical mechanics by means of collective coordinates,” Phys. Rev. 110, 1–13 (1958).
  12. L. Hespel, “Etude expérimentale et théorique du transfert radiatif dans les milieux diffusants. Détermination expérimentale des propriétés radiatives aux forts taux de charge,” Ph.D. dissertation (Ecole Centrale, Paris, 1999).
  13. J. D. Cartigny, “Radiative transfer with dependent scattering of particles,” Ph.D. dissertation (University of California, Berkeley, California, 1984).
  14. J. D. Cartigny, Y. Yamada, and C. L. Tien, “Radiative transfer with dependent scattering by particles: part 1—theoretical investigation,” J. Heat Transfer 108, 608–613 (1986).
  15. Y. Yamada, J. D. Cartigny, and C. L. Tien, “Radiative transfer with dependent scattering by particles: part 2—experimental investigation,” J. Heat Transfer 108, 614–618 (1986).
  16. P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random media: an experimental study,” J. Phys. (Paris) 49, 63–75 (1988).
  17. V. P. Dick and A. P. Ivanov, “Extinction of light in dispersive media with high particle concentrations: applicability limits of the interference approximation,” J. Opt. Soc. Am. A 16, 1034–1039 (1999).
  18. J. B. Keller, “Stochastic equations and wave propagation in random media,” Proc. Symp. Appl. Math. 16, 145–170 (1964).
  19. A. Ishimaru and Y. Kuga, “Attenuation constant of coherent field in a dense distribution of particles,” J. Opt. Soc. Am. 72, 1317–1320 (1982).
  20. B. Gélebart, D. Ferrand, H. J. Schnorenberg, and S. Avrillier, “Attenuation of a coherent field in a dense scattering medium,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, and G. J. Mueller, eds., Proc. SPIE 2626, 66–74 (1995).
  21. H. C. Hottel, A. F. Sarofim, W. H. Dalzeel, and L. A. Vasolos, “Optical properties of coatings. Effect of pigment concentration,” AIAA J. 9, 1895–1898 (1971).
  22. G. Mie, “Beitrage zur Optik trüber Medien speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  24. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970).
  25. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991).
  26. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  27. D. E. Müller, “A method for solving algebraic equations using an automatic computer,” Math. Tables Aids Computa. 10, 208–215 (1956).
  28. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, New York, 1981).
  29. C. C. Lu, Y. M. Wang, W. C. Chew, and L. Tsang, “The application of recursive aggregate T-matrix algorithm in the Monte Carlo simulations of the extinction rate of random particles,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium (IEEE, New York, 1993), pp. 1292–1295.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited