OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 12 — Dec. 1, 2001
  • pp: 3110–3118

Scattering of the transverse magnetic modes from an abruptly ended strongly asymmetrical slab waveguide by an accelerated integral equation technique

Alexander B. Manenkov, George P. Latsas, and Ioannis G. Tigelis  »View Author Affiliations


JOSA A, Vol. 18, Issue 12, pp. 3110-3118 (2001)
http://dx.doi.org/10.1364/JOSAA.18.003110


View Full Text Article

Enhanced HTML    Acrobat PDF (263 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the problem of the scattering of the first TM guided mode from an abruptly ended strongly asymmetrical slab waveguide by an improved iteration technique, which is based on the integral equation method with “accelerating” parameters. We demonstrate that the values of these parameters are related to the variational principle, and we save approximately 1–2 iterations compared with the case in which these parameters are not employed. The tangential electric-field distribution on the terminal plane, the reflection coefficient of the first TM guided mode, and the far-field radiation pattern are computed. Furthermore, a simple technique based on the Aitken extrapolation procedure is employed for faster computation of the higher-order solutions of the reflection coefficient. Numerical results are presented for several cases of abruptly ended waveguides, including systems with variational profile, while special attention is given to the far-field radiation pattern rotation and its explanation.

© 2001 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.1040) Optical devices : Acousto-optical devices
(230.7390) Optical devices : Waveguides, planar
(230.7400) Optical devices : Waveguides, slab
(350.5610) Other areas of optics : Radiation

History
Original Manuscript: January 10, 2001
Revised Manuscript: May 1, 2001
Manuscript Accepted: May 22, 2001
Published: December 1, 2001

Citation
Alexander B. Manenkov, George P. Latsas, and Ioannis G. Tigelis, "Scattering of the transverse magnetic modes from an abruptly ended strongly asymmetrical slab waveguide by an accelerated integral equation technique," J. Opt. Soc. Am. A 18, 3110-3118 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-12-3110


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Ikegami, “Reflectivity of mode at facet and oscillation mode in double-heterostructure injection lasers,” IEEE J. Quantum Electron. QE-8, 470–476 (1972). [CrossRef]
  2. H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. QE-14, 749–755 (1978). [CrossRef]
  3. K. Morishita, S. Inagaki, N. Kumagai, “Analysis of discontinuities in dielectric waveguides by means of the least squares boundary residual method,” IEEE Trans. Microwave Theory Tech. MTT-27, 310–315 (1979). [CrossRef]
  4. A. B. Manenkov, “Propagation of a surface wave along a dielectric waveguide with an abrupt change of parameters. II: solution by variational method,” Radiophys. Quantum Electron. 25, 1050–1055 (1982). [CrossRef]
  5. C. Vassallo, “Reflectivity of multidielectric coatings deposited on the end facet of a weakly guiding dielectric slab waveguide,” J. Opt. Soc. Am. A 5, 1918–1928 (1988). [CrossRef]
  6. A. B. Manenkov, “Step discontinuities in dielectric waveguides (fibres),” Opt. Quantum Electron. 22, 65–76 (1990). [CrossRef]
  7. A. B. Manenkov, “Reflection of the surface mode from an abruptly ended W-fibre,” IEE Proc. J. 139, 101–104 (1992).
  8. P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, M. J. Robertson, “Semiconductor laser facet reflectivities using free-space radiation modes,” IEE Proc. J. 140, 49–55 (1993).
  9. C. J. Smartt, T. M. Benson, P. C. Kendall, “Exact analysis of waveguide discontinuities: junctions and laser facets,” Electron. Lett. 29, 1352–1353 (1993). [CrossRef]
  10. G. Kweon, I. Park, J. Shim, “A computational method of determining reflectance at abrupt waveguide interfaces,” J. Lightwave Technol. 14, 2436–2443 (1996). [CrossRef]
  11. Y. P. Chiou, H. C. Chang, “Analysis of optical waveguide discontinuities using Padé approximants,” IEEE Photonics Technol. Lett. 9, 964–966 (1997). [CrossRef]
  12. M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981), Chap. 4.
  13. M. S. Sodha, A. K. Ghatak, Inhomogeneous Optical Waveguides (Plenum, New York, 1977).
  14. I. G. Tigelis, A. B. Manenkov, “Scattering from an abruptly terminated asymmetrical slab waveguide,” J. Opt. Soc. Am. A 16, 523–532 (1999). [CrossRef]
  15. G. Latsas, A. B. Manenkov, I. G. Tigelis, E. Sarri, “Reflectivity properties from an abruptly ended asymmetrical slab waveguide for the case of transverse magnetic modes,” J. Opt. Soc. Am. A 17, 162–172 (2000). [CrossRef]
  16. I. G. Tigelis, A. B. Manenkov, “Analysis of the mode scattering from an abruptly ended dielectric slab waveguide by an accelerated iteration technique,” J. Opt. Soc. Am. A 17, 2249–2259 (2000). [CrossRef]
  17. A. A. Samarskii, A. V. Goolin, Numerical Methods (Nauka, Moscow, 1989) (in Russian).
  18. A. B. Manenkov, “Accuracy of approximation for fibre discontinuity analysis,” Opt. Quantum Electron. 23, 81–90 (1991). [CrossRef]
  19. I. G. Tigelis, N. K. Uzunoglu, C. N. Capsalis, “Scattering from an abruptly terminated single-mode fiber waveguide,” J. Electromagn. Waves Appl. 5, 447–457 (1991).
  20. M. Abramovitz, I. A. Stegun, eds., Handbook of Mathematical Functions, Appl. Math. Ser. 55 (National Bureau of Standards) (U.S. Government Printing Office, Washington, 1964), Chap. 3.
  21. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, London, 1991), Chap. 1.
  22. F. G. Tricomi, Integral Equations (Interscience, New York, 1957).
  23. J. Meixner, “The behavior of electromagnetic fields at edges,” IEEE Trans. Antennas Propag. AP-20, 442–446 (1972). [CrossRef]
  24. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52, 116–130 (1962). [CrossRef] [PubMed]
  25. F. K. Reinhart, I. Hayashi, M. B. Panish, “Mode reflectivity and waveguide properties of double-heterostructure injection lasers,” J. Appl. Phys. 42, 4466–4479 (1971). [CrossRef]
  26. J. K. Butler, J. Zoroofchi, “Radiation fields of GaAs-(AlGa)As injection lasers,” IEEE J. Quantum Electron. QE-10, 809–815 (1974). [CrossRef]
  27. J. Buus, “Analytic approximation for the reflectivity of DH lasers,” IEEE J. Quantum Electron. QE-17, 2256–2257 (1981). [CrossRef]
  28. C. Vassallo, “Antireflection coatings for optical semiconductor amplifiers: justification of a heuristic analysis,” Electron. Lett. 24, 61–62 (1988). [CrossRef]
  29. A. G. Failla, G. P. Bava, I. Montrosset, “Structural design criteria for polarization insensitive semiconductor optical amplifiers,” J. Lightwave Technol. 8, 302–308 (1990). [CrossRef]
  30. Q. Liu, W. C. Chew, “Analysis of discontinuities in planar dielectric waveguides: an eigenmode propagation method,” IEEE Trans. Microwave Theory Tech. MTT-39, 422–429 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited