OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 2 — Feb. 1, 2001
  • pp: 241–252

Accuracy of velocity estimation by Reichardt correlators

Ron O. Dror, David C. O’Carroll, and Simon B. Laughlin  »View Author Affiliations

JOSA A, Vol. 18, Issue 2, pp. 241-252 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (346 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Although a great deal of experimental evidence supports the notion of a Reichardt correlator as a mechanism for biological motion detection, the correlator does not signal true image velocity. This study examines the accuracy with which realistic Reichardt correlators can provide velocity estimates in an organism’s natural visual environment. The predictable statistics of natural images imply a consistent correspondence between mean correlator response and velocity, allowing the otherwise ambiguous Reichardt correlator to act as a practical velocity estimator. Analysis and simulations suggest that processes commonly found in visual systems, such as prefiltering, response compression, integration, and adaptation, improve the reliability of velocity estimation and expand the range of velocities coded. Experimental recordings confirm our predictions of correlator response to broadband images.

© 2001 Optical Society of America

OCIS Codes
(150.4620) Machine vision : Optical flow
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4150) Vision, color, and visual optics : Motion detection
(330.4270) Vision, color, and visual optics : Vision system neurophysiology

Original Manuscript: January 3, 2000
Revised Manuscript: September 20, 2000
Manuscript Accepted: September 20, 2000
Published: February 1, 2001

Ron O. Dror, David C. O’Carroll, and Simon B. Laughlin, "Accuracy of velocity estimation by Reichardt correlators," J. Opt. Soc. Am. A 18, 241-252 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the central nervous system,” in Sensory Communication, A. Rosenblith, ed. (MIT Press, Cambridge, Mass.1961), pp. 303–317.
  2. E. H. Adelson, J. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985). [CrossRef] [PubMed]
  3. J. P. H. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985). [CrossRef] [PubMed]
  4. F. Wolf-Oberhollenzer, K. Kirschfeld, “Motion sensitivity in the nucleus of the basal optic root of the pigeon,” J. Neurophysiol. 71, 1559–1573 (1994). [PubMed]
  5. R. C. Emerson, M. C. Citron, W. J. Vaughn, S. A. Klein, “Nonlinear directionally selective subunits in complex cells of cat striate cortex,” J. Neurophysiol. 58, 33–65 (1987). [PubMed]
  6. M. V. Srinivasan, S. W. Zhang, M. Lehrer, T. S. Collett, “Honeybee navigation en route to the goal: visual flight control and odometry,” J. Exp. Biol. 199, 237–244 (1996). [PubMed]
  7. S. P. McKee, G. H. Silverman, K. Nakayama, “Precise velocity discrimination despite random variations in temporal frequency and contrast,” Vision Res. 26, 609–619 (1986). [CrossRef] [PubMed]
  8. M. Egelhaaf, A. Borst, W. Reichardt, “Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly’s nervous system,” J. Opt. Soc. Am. A 6, 1070–1087 (1989). [CrossRef] [PubMed]
  9. G. A. Horridge, L. Marcelja, “On the existence of fast and slow directionally sensitive motion detector neurons in insects,” Proc. R. Soc. London, Ser. B 248, 47–54 (1992). [CrossRef]
  10. G. J. Burton, I. R. Moorhead, “Color and spatial structure in natural scenes,” Appl. Opt. 26, 157–170 (1987). [CrossRef] [PubMed]
  11. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987). [CrossRef] [PubMed]
  12. D. J. Tolhurst, Y. Tadmor, T. Chao, “Amplitude spectra of natural images,” Ophthalmol. Physiol. Opt. 12, 229–232 (1992). [CrossRef]
  13. D. L. Ruderman, “The statistics of natural images,” Network Comput. Neural Syst. 5, 517–48 (1994). [CrossRef]
  14. M. Egelhaaf, A. Borst, “Movement detection in arthropods,” in Visual Motion and Its Role in the Stabilization of Gaze, J. Wallman, F. A. Miles, eds. (Elsevier, Amsterdam, 1993), pp. 53–77.
  15. R. C. Hardie, “Functional organization of the fly retina,” in Progress in Sensory Physiology, D. Ottoson, ed. (Springer-Verlag, Berlin, 1985), Vol. 5, pp. 1–80.
  16. R. Payne, J. Howard, “Response of an insect photoreceptor: a simple log-normal model,” Nature 290, 415–416 (1981). [CrossRef]
  17. B. Tatler, D. C. O’Carroll, S. B. Laughlin, “Temperature and temporal resolving power of fly photoreceptors,” J. Comp. Physiol. A 186, 399–407 (2000). [CrossRef] [PubMed]
  18. A. C. James, “White-noise studies in the fly Lamina,” Ph.D. thesis (Australian National University, Canberra, Australia, 1990).
  19. M. Egelhaaf, A. Borst, “Transient and steady-state response properties of movement detectors,” J. Opt. Soc. Am. A 6, 116–127 (1989). [CrossRef] [PubMed]
  20. D. C. O’Carroll, S. B. Laughlin, N. J. Bidwell, R. A. Harris, “Spatio-temporal properties of motion detectors matched to low image velocities in hovering insects,” Vision Res. 37, 3427–3439 (1997). [CrossRef]
  21. S. Single, J. Haag, A. Borst, “Dendritic computation of direction selectivity and gain control in visual interneurons,” J. Neurosci. 17, 6023–6030 (1997). [PubMed]
  22. T. Maddess, S. B. Laughlin, “Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency,” Proc. R. Soc. London Ser. B 225, 251–275 (1985). [CrossRef]
  23. R. A. Harris, D. C. O’Carroll, S. B. Laughlin, “Adaptation and the temporal delay filter of fly motion detectors,” Vision Res. 39, 2603–2613 (1999). [CrossRef] [PubMed]
  24. Information is available from David C. O’Carroll, Department of Zoology, University of Washington, Box 351800, Seattle, Wash. 98195-1800; davidoc@u.washington.edu.
  25. N. Franceschini, A. Riehle, A. le Nestour, “Directionally selective motion detection by insect neurons,” in Facets of Vision, D. G. Stavenga, R. C. Hardie, eds. (Springer-Verlag, Berlin, 1989), pp. 360–390.
  26. S. B. Laughlin, “Matching coding, circuits, cells and molecules to signals: general principles of retinal design in the fly’s eye,” Prog. Retinal Res. 13, 165–195 (1994). [CrossRef]
  27. T. Poggio, W. Reichardt, “Visual control of orientation behaviour in the fly. II. Towards the underlying neural interactions,” Q. Rev. Biophys. 9, 377–438 (1976). [CrossRef] [PubMed]
  28. J. H. van Hateren, “Processing of natural time series of intensities by the visual system of the blowfly,” Vision Res. 37, 3407–3416 (1997). [CrossRef]
  29. A. van der Schaaf, J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vision Res. 36, 2759–2770 (1996). [CrossRef] [PubMed]
  30. D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Visual Neurosci. 9, 181–197 (1992). [CrossRef]
  31. D. Osorio, “Mechanisms of early visual processing in the medulla of the locust optic lobe: how self-inhibition, spatial-pooling and signal rectification contribute to the properties of transient cells,” Visual Neurosci. 7, 345–355 (1991). [CrossRef]
  32. M. F. Land, T. S. Collett, “Chasing behaviour of houseflies (Fannia canicularis): a description and analysis,” J. Comp. Physiol. A 89, 331–357 (1974). [CrossRef]
  33. R. O. Dror, “Accuracy of visual velocity estimation by Reichardt correlators,” Master’s thesis (University of Cambridge, Cambridge, UK, 1998).
  34. A. W. Snyder, “The physics of vision in compound eyes,” in Comparative Physiology and Evolution of Vision in Invertebrates: Invertebrate Photoreceptors, Vol. 6A of Handbook of Sensory Physiology, H. Autrum, ed. (Springer-Verlag, Berlin, 1979), pp. 225–313. [CrossRef]
  35. J. K. Douglass, N. J. Strausfeld, “Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons,” J. Neurosci. 15, 5596–5611 (1995). [PubMed]
  36. G. Nalbach, R. Hengstenberg, “The halteres of the blowfly Calliphora,” J. Comp. Physiol. A 175, 695–708 (1994). [CrossRef]
  37. S. Single, A. Borst, “Dendritic integration and its role in computing image velocity,” Science 281, 1848–1850 (1998). [CrossRef] [PubMed]
  38. K. Hausen, M. Egelhaaf, “Neural mechanisms of visualcourse control in insects,” in Facets of Vision, D. G. Stavenga, R. C. Hardie, eds. (Springer-Verlag, Heidelberg, 1989), pp. 391–424.
  39. M. Egelhaaf, W. Reichardt, “Dynamic response properties of movement detectors: theoretical analysis and electrophysiological investigation in the visual system of the fly,” Biol. Cybern. 56, 69–87 (1987). [CrossRef]
  40. D. W. Dong, J. J. Atick, “Statistics of natural time-varying images,” Network Comput. Neural Syst. 6, 345–358 (1995). [CrossRef]
  41. N. Franceschini, J. M. Pichon, C. Blanes, “From insect vision to robot vision,” Philos. Trans. R. Soc. London Ser. B 337, 283–294 (1992). [CrossRef]
  42. R. Sarpeshkar, W. Bair, C. Koch, “An analog VLSI chip for local velocity estimation based on Reichardt’s motion algorithm,” in Advances in Neural Information Processing Systems, S. Hanson, J. Cowan, L. Giles, eds. (Morgan Kauffman, San Mateo, Calif., 1993), Vol. 5, pp. 781–788.
  43. R. O. Dror, D. C. O’Carroll, S. B. Laughlin, “The role of natural image statistics in biological motion estimation,” Springer Lect. Notes Comput. Sci. 1811, 492–501 (2000). [CrossRef]
  44. M. F. Land, H. M. Eckert, “Maps of the acute zones of fly eyes,” J. Comp. Physiol. A 156, 525–538 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited