OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 2 — Feb. 1, 2001
  • pp: 273–282

Spatial summation of peripheral Gabor patches

Velitchko Manahilov, William A. Simpson, and Daphne L. McCulloch  »View Author Affiliations


JOSA A, Vol. 18, Issue 2, pp. 273-282 (2001)
http://dx.doi.org/10.1364/JOSAA.18.000273


View Full Text Article

Acrobat PDF (375 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Previous studies have specified the foveal pattern that is seen most efficiently, with the assumption that the waveform of the best pattern matches the impulse response of the most sensitive visual filter. We measured the threshold contrast for circular, collinear, and orthogonal Gabor stimuli of 6 Hz temporal frequency presented 7 deg above the fixation point. We found that the threshold contrast energy is minimal for a class of stimuli whose Fourier-spectra bandwidth is less than ∼1 octave. These findings suggest that an energy algorithm might underlie spatial summation of peripheral Gabor patches. The different behavior of spatial summation in fovea and periphery might reflect the differences in pattern detectability across space in the central and peripheral visual fields. It is also possible that a coherent (cross-correlation) algorithm is employed in detection of foveal stimuli and that an incoherent (energy) algorithm is employed in detection of peripheral stimuli.

© 2001 Optical Society of America

OCIS Codes
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.1880) Vision, color, and visual optics : Detection
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5000) Vision, color, and visual optics : Vision - patterns and recognition
(330.6110) Vision, color, and visual optics : Spatial filtering
(330.7310) Vision, color, and visual optics : Vision

Citation
Velitchko Manahilov, William A. Simpson, and Daphne L. McCulloch, "Spatial summation of peripheral Gabor patches," J. Opt. Soc. Am. A 18, 273-282 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-2-273


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. H. Graham and R. Margaria, “Area and the intensity time relation in the peripheral retina,” Am. J. Physiol. 113, 299–305 (1935).
  2. H. B. Barlow, “Temporal and spatial summation in human vision at different background intensities,” J. Physiol. (London) 141, 337–350 (1958).
  3. F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).
  4. E. R. Howell and R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978).
  5. J. G. Robson and N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
  6. A. B. Watson, H. B. Barlow, and J. G. Robson, “What does the eye see best?” Nature 302, 419–422 (1983).
  7. D. Kersten, “Spatial summation in visual noise,” Vision Res. 24, 1977–1990 (1984).
  8. U. Polat and C. W. Tyler, “What pattern the eye sees best,” Vision Res. 39, 887–895 (1999).
  9. W. P. Tanner and T. G. Birdsall, “Definition of d’ and h as psychophysical measures,” J. Acoust. Soc. Am. 30, 922–928 (1958).
  10. D. B. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1974).
  11. H. B. Barlow, “The efficiency of detecting changes of density in random dot patterns,” Vision Res. 18, 637–650 (1978).
  12. A. E. Burgess, “The Rose model, revisited,” J. Opt. Soc. Am. A 16, 633–646 (1999).
  13. A. B. Watson and K. Turano, “The optimal motion stimulus,” Vision Res. 35, 325–336 (1995).
  14. C. Rashbass, “The visibility of transient changes of luminance,” J. Physiol. (London) 210, 165–186 (1970).
  15. J. J. Koenderink and A. J. van Doorn, “Detectability of power fluctuations of temporal visual noise,” Vision Res. 18, 191–195 (1978).
  16. P. Bijl and J. J. Koenderink, “Visibility of elliptical Gaussian blobs,” Vision Res. 33, 243–255 (1993).
  17. V. Manahilov and W. Simpson, “Energy model for contrast detection: spatiotemporal characteristics of threshold vision,” Biol. Cybern. 81, 61–71 (1999).
  18. W. H. Swanson and H. R. Wilson, “Eccentricity dependence of contrast matching and oblique masking,” Vision Res. 25, 1285–1295 (1985).
  19. R. F. Quick, Jr., “A vector-magnitude model of contrast detection,” Kybernetik 16, 65–67 (1974).
  20. A. B. Watson, “Probability summation over time,” Vision Res. 19, 515–522 (1979).
  21. A. B. Watson, “Summation of grating patches indicates many types of detector at one retinal location,” Vision Res. 22, 17–25 (1982).
  22. N. Graham and J. G. Robson, “Summation of very close spatial frequencies: the importance of spatial probability summation,” Vision Res. 27, 1997–2007 (1987).
  23. A. B. Watson, “Visual detection of spatial contrast patterns: evaluation of five simple models,” Opt. Express 6, 12–33 (2000), http://epubs.osa.org/opticsexpress/topbiframe.htm.
  24. G. D. Pelli and L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
  25. H. Levitt, “Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1970).
  26. V. Manahilov, “Triphasic temporal impulse responses and Mach bands in time,” Vision Res. 38, 447–458 (1998).
  27. A. B. Watson, “Temporal sensitivity,” in Handbook of Perception and Human Performance I: Sensory Processes and Perception, K. R. Boff, L. Kaufman, and J. P. Thomas, eds. (Wiley, New York, 1986), pp. 6.1–6.41.
  28. R. F. Quick, Jr., W. W. Mullins, and T. A. Reichert, “Spatial summation effects on two-component grating thresholds,” J. Opt. Soc. Am. 68, 116–124 (1978).
  29. J. S. Pointer and R. F. Hess, “The contrast sensitivity gradient across the human visual field with emphasis on the low spatial frequency range,” Vision Res. 29, 1133–1151 (1989).
  30. J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvarinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).
  31. L. A. Temme, L. Malcus, and W. K. Noell, “Peripheral visual field is radially organized,” Am. J. Optom. Physiol. Opt. 62, 545–554 (1985).
  32. A. E. Burgess, “High level visual decision efficiencies,” in Vision: Codding and Efficiency, C. B. Blakemore, ed. (Cambridge U. Press, New York, 1990), pp. 431–440.
  33. M. S. Banks, A. B. Sekuler, and S. J. Anderson, “Peripheral spatial vision: limits imposed by optics, photoreceptors, and receptor pooling,” J. Opt. Soc. Am. A 8, 1775–1787 (1991).
  34. G. L. Savage and M. S. Banks, “Scotopic visual efficiency: constraints by optics, receptor properties, and rod pooling,” Vision Res. 32, 645–656 (1992).
  35. O. Braddick, “Is spatial phase degraded in peripheral vision and visual pathology?” in Documenta Ophthalmologica Proceedings Series, L. Maffei, ed. (W. Junk, The Hague, 1981), pp. 255–262.
  36. H. S. Orbach and H. R. Wilson, “Factors limiting peripheral pattern discrimination,” Spatial Vis. 12, 83–106 (1999).
  37. A. Burgess and H. Ghandeharian, “Visual signal detection. I. Ability to use phase information,” J. Opt. Soc. Am. A 1, 900–905 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited