OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 3 — Mar. 1, 2001
  • pp: 507–513

Hyperefficient detection of targets in noisy images

Ravindra M. Manjeshwar and David L. Wilson  »View Author Affiliations


JOSA A, Vol. 18, Issue 3, pp. 507-513 (2001)
http://dx.doi.org/10.1364/JOSAA.18.000507


View Full Text Article

Enhanced HTML    Acrobat PDF (401 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compared human detection of visual targets in noisy images with that of a theoretically optimum matched filter. Using a small thin target with vertically aligned markers, we obtained hyperefficient detection as high as 91% as compared with the theoretical optimum, a value far exceeding the 30–50% value typically reported. When the markers were removed, detection efficiencies degraded to an average of 27%, even though subjects were aware that the target was always placed in the center of a reasonably small panel. Using a nine-alternative forced-choice experiment, we compared detection by human observers with a matched-filter computational observer on a trial-by-trial basis. With the markers present, when humans missed the correct panel, they most often chose the panel with the second-highest decision variable output from the computational observer, suggesting that the template-matching model is a good one. To model results without the markers, we included location uncertainty and additional noise sources in the template matching of the computational observer. A location uncertainty of only 1 pixel, corresponding to a retinal distance of ≈12 μm, a dimension of the order of the size of the receptive field of photoreceptors, explained the psychometric data. With the marker present, the model suggests that hyperefficient detection is obtained by limiting target location uncertainty to <6 μm. Together these results give important new insights into human visual detection mechanisms.

© 2001 Optical Society of America

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.1880) Vision, color, and visual optics : Detection

History
Original Manuscript: January 28, 2000
Revised Manuscript: August 4, 2000
Manuscript Accepted: August 4, 2000
Published: March 1, 2001

Citation
Ravindra M. Manjeshwar and David L. Wilson, "Hyperefficient detection of targets in noisy images," J. Opt. Soc. Am. A 18, 507-513 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-3-507


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994). [CrossRef] [PubMed]
  2. P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: application to pulsed fluoroscopy perception,” Behav. Res. Methods Instrum. Comput. 30, 332–348 (1998). [CrossRef]
  3. D. L. Wilson, P. Xue, R. Aufrichtig, “Perception of fluoroscopy last-image-hold,” Med. Phys. 21, 1875–1883 (1994). [CrossRef] [PubMed]
  4. P. Xue, D. L. Wilson, “Detection of moving objects in pulsed x-ray fluoroscopy,” J. Opt. Soc. Am. A 15, 375–388 (1998). [CrossRef]
  5. D. L. Wilson, K. N. Jabri, R. Aufrichtig, “Perception of temporally filtered x-ray fluoroscopy images,” IEEE Trans. Med. Imaging 18, 22–31 (1999). [CrossRef] [PubMed]
  6. A. E. Burgess, H. Ghandeharian, “Visual signal detection. II. Signal-location identification,” J. Opt. Soc. Am. A 1, 906–910 (1984). [CrossRef] [PubMed]
  7. D. G. Pelli, “Uncertainty explains many aspects of visual contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1508–1531 (1985). [CrossRef] [PubMed]
  8. D. J. Tolhurst, J. A. Movshon, A. F. Dean, “The statistical reliability of signals in single neurons in cat and monkey visual cortex,” Vision Res. 23, 775–785 (1982). [CrossRef]
  9. W. A. Wickelgren, “Unidimensional strength theory and component analysis of noise in absolute and comparative judgments,” J. Math. Psychol. 5, 102–122 (1968). [CrossRef]
  10. D. J. Lasley, T. E. Cohn, “Why luminance discrimination may be better than detection,” Vision Res. 21, 273–278 (1981). [CrossRef] [PubMed]
  11. A. E. Burgess, R. F. Wagner, R. Jennings, H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93–94 (1981). [CrossRef] [PubMed]
  12. G. E. Legge, D. Kersten, A. E. Burgess, “Contrast discrimination in noise,” J. Opt. Soc. Am. A 4, 391–404 (1987). [CrossRef] [PubMed]
  13. M. P. Eckstein, J. S. Whiting, J. P. Thomas, “Detection and contrast discrimination of moving signals in uncorrelated Gaussian noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 9–25 (1996). [CrossRef]
  14. H. J. Muller, G. W. Humphreys, “Luminance-increment detection: capacity limited or not?” J. Exp. Psychol. 17, 107–124 (1991).
  15. R. Hubner, “The efficiency of different cue types for reducing spatial frequency uncertainty,” Vision Res. 36, 410–408 (1996).
  16. E. T. Davis, P. Kramer, N. Graham, “Uncertainty about spatial frequency, spatial position or contrast of visual patterns,” Perception Psychophys. 33, 20–28 (1983). [CrossRef]
  17. H. L. Kundel, C. F. Nodine, L. Toto, S. Lauver, “A circle cue enhances detection of simulated masses on mammogram backgrounds,” in Medical Imaging: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 81–84 (1997).
  18. R. M. Manjeshwar, D. L. Wilson, “Effect of inherent location uncertainty on the detection of stationary targets in noise,” J. Opt. Soc. Am. A 18, 78–85 (2001). [CrossRef]
  19. J. A. Solomon, N. Lavie, M. J. Morgan, “Contrast discrimination function: spatial cuing effects,” J. Opt. Soc. Am. A 14, 2443–2448 (1997). [CrossRef]
  20. G. Z. Balz, H. S. Hock, “The effect of attentional spread on spatial resolution,” Vision Res. 37, 1499–1510 (1997). [CrossRef] [PubMed]
  21. L.-P. Shiu, H. Pashler, “Spatial attention and vernier acuity,” Vision Res. 35, 337–343 (1995). [CrossRef] [PubMed]
  22. M. Fahle, T. Poggio, “Visual hyperacuity: spatiotemporal interpolation in human vision,” Proc. R. Soc. London 213, 451–477 (1981). [CrossRef]
  23. G. Westheimer, S. P. McKee, “Visual acuity in the presence of retinal-image motion,” J. Opt. Soc. Am. A 65, 847–850 (1975). [CrossRef]
  24. L. B. Stelmach, P. J. Hearty, “Requirements for static and dynamic spatial resolution in advanced television systems: a psychophysical evaluation,” J. Soc. Motion Pict. Television Eng. 100, 5–9 (1991).
  25. R. J. Watt, M. J. Morgan, R. M. Ward, “The use of different cues in vernier acuity,” Vision Res. 23, 991–995 (1983). [CrossRef] [PubMed]
  26. B. L. Beard, A. J. Ahumada, “A technique to extract relevant image features for visual tasks,” in Human Vision and Electronic Imaging III, B. E. Rogowitz, T. N. Pappas, eds., Proc. SPIE3299, 79–85 (1998). [CrossRef]
  27. R. N. McDonough, A. D. Whalen, Detection of Signals in Noise, 2nd ed. (Academic, San Diego, 1995).
  28. D. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Krieger, New York, 1974).
  29. A. E. Burgess, B. Colborne, “Visual signal detection. IV. Observer inconsistency,” J. Opt. Soc. Am. A 5, 617–627 (1988). [CrossRef] [PubMed]
  30. P. Xue, D. L. Wilson, “Pulsed fluoroscopy detectability from interspersed adaptive forced choice measurements,” Med. Phys. 23, 1833–1843 (1996). [CrossRef] [PubMed]
  31. A. E. Burgess, H. Ghandeharian, “Visual signal detection. I. Ability to use phase information,” J. Opt. Soc. Am. A 1, 900–905 (1984). [CrossRef] [PubMed]
  32. R. G. Swensson, P. Judy, “Detection of noisy visual targets: models for the effects of spatial uncertainty and signal-to-noise ratio,” Percept. Psychophys. 29, 521–534 (1981). [CrossRef] [PubMed]
  33. W. S. Geisler, “Physical limits of acuity and hyperacuity,” J. Opt. Soc. Am. A 1, 775–782 (1984). [CrossRef] [PubMed]
  34. M. P. Eckstein, A. J. Ahumada, A. B. Watson, “Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise,” J. Opt. Soc. Am. A 14, 2406–2419 (1997). [CrossRef]
  35. Z.-L. Lu, B. A. Dosher, “Characterizing human perceptual inefficiencies with equivalent internal noise,” J. Opt. Soc. Am. A 16, 764–778 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited