OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 4 — Apr. 1, 2001
  • pp: 821–830

Recovery of optical parameters in multiple-layered diffusive media: theory and experiments

Jorge Ripoll, Vasilis Ntziachristos, Joe P. Culver, Deva N. Pattanayak, Arjun G. Yodh, and Manuel Nieto-Vesperinas  »View Author Affiliations


JOSA A, Vol. 18, Issue 4, pp. 821-830 (2001)
http://dx.doi.org/10.1364/JOSAA.18.000821


View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffuse photon density waves have lately been used both to characterize diffusive media and to locate and characterize hidden objects, such as tumors, in soft tissue. In practice, most biological media of medical interest consist of various layers with different optical properties, such as the fat layer in the breast or the different layers present in the skin. Also, most experimental setups consist of a multilayered system, where the medium to be characterized (i.e., the patient’s organ) is usually bounded by optically diffusive plates. Incorrect modeling of interfaces may induce errors comparable to the weak signals obtained from tumors embedded deep in highly heterogeneous tissue and lead to significant reconstruction artifacts. To provide a means to analyze the data acquired in these configurations, the basic expressions for the reflection and transmission coefficients for diffusive–diffusive and diffusive–nondiffusive interfaces are presented. A comparison is made between a diffusive slab and an ordinary dielectric slab, thus establishing the limiting distance between the two interfaces of the slab for multiple reflections between them to be considered important. A rigorous formulation for multiple-layered (M-layered) diffusive media is put forward, and a method for solving any M-layered medium is shown. The theory presented is used to characterize a two-layered medium from transmission measurements, showing that the coefficients of scattering, μs, and absorption, μa, are retrieved with great accuracy. Finally, we demonstrate the simultaneous retrieval of both μs and μa.

© 2001 Optical Society of America

OCIS Codes
(170.5270) Medical optics and biotechnology : Photon density waves
(290.1990) Scattering : Diffusion
(290.7050) Scattering : Turbid media

History
Original Manuscript: March 30, 2000
Revised Manuscript: October 4, 2000
Manuscript Accepted: October 18, 2000
Published: April 1, 2001

Citation
Jorge Ripoll, Vasilis Ntziachristos, Joe P. Culver, Deva N. Pattanayak, Arjun G. Yodh, and Manuel Nieto-Vesperinas, "Recovery of optical parameters in multiple-layered diffusive media: theory and experiments," J. Opt. Soc. Am. A 18, 821-830 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-4-821


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
  2. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  3. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 38–40 (1995). [CrossRef]
  4. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995). [CrossRef] [PubMed]
  5. S. R. Arridge, P. Van Der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for near-infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991). [CrossRef]
  6. E. B. de Haller, “Time-resolved transillumination and optical tomography,” J. Biomed. Opt. 1, 7–17 (1996). [CrossRef] [PubMed]
  7. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998). [CrossRef]
  8. V. Ntziachristos, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998). [CrossRef]
  9. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  10. J. G. Fujimoto, M. S. Patterson, eds., Advances in Optical Imaging and Photon Migration, Vol. 21 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1998).
  11. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992). [CrossRef] [PubMed]
  12. J. B. Frishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993). [CrossRef]
  13. M. Keijzer, W. M. Star, P. R. M. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988). [CrossRef] [PubMed]
  14. J. M. Schmitt, G. X. Zhou, E. C. Walker, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990). [CrossRef] [PubMed]
  15. I. Dayan, S. Havlin, G. H. Weiss, “Photon migration in a two-layer turbid medium: a diffusion analysis,” J. Mod. Opt. 39, 1567–1582 (1992). [CrossRef]
  16. A. H. Hielscher, H. Liu, B. Chance, “Time-resolved photon emission from layered turbid media,” Appl. Opt. 35, 2221–2227 (1996). [CrossRef]
  17. G. Alexandrakis, T. J. Farrell, M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37, 7401–7409 (1998). [CrossRef]
  18. T. J. Farrell, M. S. Patterson, M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt. 37, 1958–1972 (1998). [CrossRef]
  19. A. Kienle, M. S. Patterson, N. Dögnitz, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998). [CrossRef]
  20. A. Kienle, T. Glanzmann, G. Wagnieres, “Investigation of two-layered turbid media with time-resolved reflectance,” Appl. Opt. 37, 6852–6862 (1998). [CrossRef]
  21. L. O. Svaasand, T. Spott, J. B. Frishkin, T. Pham, B. J. Tromberg, M. W. Berns, “Reflectance measurements of layered media with diffuse photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions,” Phys. Med. Biol. 44, 801–813 (1999). [CrossRef] [PubMed]
  22. G. Alexandrakis, T. J. Farrell, M. S. Patterson, “Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain,” Appl. Opt. 39, 2235–2244 (2000). [CrossRef]
  23. T. H. Pham, T. Spott, L. O. Svaasand, B. J. Tromberg, “Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance,” Appl. Opt. 39, 4733–4745 (2000). [CrossRef]
  24. J. Ripoll, M. Nieto-Vesperinas, “Reflection and transmission coefficients for diffuse photon-density waves,” Opt. Lett. 24, 796–798 (1999). [CrossRef]
  25. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1993).
  26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  27. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge UK, 1995).
  28. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley–Interscience, New York, 1991).
  29. J. Ripoll, M. Nieto-Vesperinas, R. Carminati, “Spatial resolution of diffuse photon density waves,” J. Opt. Soc. Am. A 16, 1466–1476 (1999). [CrossRef]
  30. J. Ripoll, S. R. Arridge, H. Dehghani, M. Nieto-Vesperinas, “Boundary conditions for light propagation in diffusive media with nonscattering regions,” J. Opt. Soc. Am. A 17, 1671–1681 (2000). [CrossRef]
  31. R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  32. R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995). [CrossRef]
  33. A. Banos, Dipole Radiation in the Presence of a Conducting Half-Space (Pergamon, New York, 1966).
  34. X. De Li, T. Durduran, A. G. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1997). [CrossRef]
  35. T. Durduran, J. P. Culver, M. J. Holboke, X. D. Li, L. Zubkov, B. Chance, D. N. Pattanayak, A. G. Yodh, “Algorithms for 3D localization and imaging using near-field diffraction tomography with diffuse light,” Opt. Exp. 4, 247–262 (1999). [CrossRef]
  36. D. N. Pattanayak, A. G. Yodh, “Diffuse optical 3D-slice imaging of bounded turbid media using a new integrodifferential equation,” Opt. Exp. 4, 231–240 (1999). [CrossRef]
  37. A. Yariv, Introduction to Optical Electronics, 2nd ed. (Holt, Rinehart & Winston, New York, 1976).
  38. J. Ripoll, M. Nieto-Vesperinas, “Index mismatch for diffuse photon-density waves both at flat and rough diffuse-diffuse interfaces,” J. Opt. Soc. Am. A 16, 1947–1957 (1999). [CrossRef]
  39. Detailed information on the components and on how to build the resin can be found at http://www.med.upenn.edu/~oisg/oisg.html .
  40. V. Ntziachristos, X. Ma, A. G. Yodh, B. Chance, “Multichannel photon counting instrument for spatially resolved near-infrared spectroscopy,” Rev. Sci. Instrum. 70, 193–201 (1999). [CrossRef]
  41. V. Ntziachristos, B. Chance, A. G. Yodh, “Differential diffuse optical tomography,” Opt. Exp. 5, 230–242 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited