OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 4 — Apr. 1, 2001
  • pp: 926–931

Spectral analysis of device operators: the rotating birefringent plate

Tiberiu Tudor  »View Author Affiliations


JOSA A, Vol. 18, Issue 4, pp. 926-931 (2001)
http://dx.doi.org/10.1364/JOSAA.18.000926


View Full Text Article

Acrobat PDF (142 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectral analysis of device (instrument) operators, as an alternative approach to dynamic polarization phenomena, is presented by means of the example of a classical time-varying optical device: the rotating bi refringent plate. The mutual coherence matrices of right and left circularly polarized light are emphasized in the spectral structure of the rotating-plate matrix, and their physical significance is analyzed.

© 2001 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization

Citation
Tiberiu Tudor, "Spectral analysis of device operators: the rotating birefringent plate," J. Opt. Soc. Am. A 18, 926-931 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-4-926


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Garcia-Mateos, F. Canal, and M. Haelterman, “Passive fiber ring flip-flop memory based on polarization dynamics,” Opt. Commun. 137, 427–436 (1997).
  2. A. D. May and I. Stephan, “Polarization dynamics in quasi-isotropic lasers,” in Coherence and Quantum Optics, J. H. Eberly, ed. (Plenum, New York, 1990).
  3. A. P. Voitovich, A. M. Kulminskii, and V. N. Severikov, “Nonlinear dynamics of laser system at intracavity modulation of polarization,” Opt. Commun. 126, 152–166 (1996).
  4. L. P. Svirina, V. G. Gudelev, and Yu. P. Zhurik, “Spontaneous pulsations in gas class-A lasers with weakly anisotropic cavities,” Phys. Rev. A 56, 5053–5064 (1997).
  5. D. E. Aspnes and P. S. Hauge, “Rotating compensator/analyzer fixed-analyzer ellipsometer: analysis and comparison to other automatic ellipsometers,” J. Opt. Soc. Am. 66, 949–954 (1976).
  6. R. W. Collins, “Automatic rotating element ellipsometers: calibration, operation and real-time applications,” Rev. Sci. Instrum. 61, 2029–2062 (1990).
  7. G. E. Jellison, Jr., “Two-channel polarization modulation ellipsometers,” Appl. Opt. 29, 959–974 (1990).
  8. T. Tudor, “The evolution of light polarization state along a KDP electro-optical modulator,” Optik 109, 27–34 (1998).
  9. T. Tudor and I. Vinkler, “Time-varying coherency matrices and spectral coherency matrices,” Pure Appl. Opt. 7, 1451–1457 (1998).
  10. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995), p. 363.
  11. C. Brosseau, Fundamentals of Polarized Light. A Statistical Optics Approach (Wiley, New York, 1998), p. 93.
  12. A. S. Marathay, “Operator formalism in the theory of partial polarization,” J. Opt. Soc. Am. 55, 969–980 (1965).
  13. J. Ben Uri, “Polarization and interference in optics: Part II,” Optik 47, 405–420 (1977).
  14. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, London, 1975).
  15. W. A. Shurcliff, Polarized Light (Harvard U. Press, Cambridge, Mass., 1962).
  16. J. W. Simmons and M. J. Guttmann, States, Waves and Photons : A Modern Introduction to Light (Addison-Wesley, Reading, Mass., 1970).
  17. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, Amsterdam, 1996).
  18. I. P. Kaminow and E. H. Turner, “Electro-optic light modulators,” Appl. Opt. 5, 1612–1628 (1966).
  19. P. Connes, D. H. Tuan, and J. Pinard, “Décomposition de raises spectrales par modulation en haute fréquence,” J. Phys. Radium 23, 173–183 (1962).
  20. A. Linke, ed., Special issue on coherent communication, J. Lightwave Technol. LT-8 (3) (1990).
  21. F. Durst, A. Melling, and A. Whitelaw, Principles and Practice of Laser-Doppler Velocimetry (Academic, London, 1981).
  22. J. P. Campbell, “Rotating waveplate optical frequency shifting in lithium niobate,” IEEE J. Quantum Electron. QE-7, 450–457 (1971).
  23. I. W. Stallard et al., “Electro-optic frequency translators and their applications in coherent optical fiber systems,” Br. Telecom. J. 4, 16–22 (1986).
  24. C. F. Buhrer, D. Baird, and E. M. Conwell, “Optical frequency shifting by electro-optic effect,” Appl. Phys. Lett. 1, 46–49 (1962).
  25. C. J. Peters, “Optical frequency translator using two phase modulators in tandem,” Appl. Opt. 4, 857–861 (1965).
  26. L. E. Drain and B. C. Moss, “The frequency shifting of laser light by electro-optic techniques,” Opto-Electron. 4, 429–439 (1972).
  27. M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. QE-17, 2225–2229 (1981).
  28. P. A. M. Dirac, The Principles of Quantum Mechanics, 3rd ed. (Clarendon, Oxford, UK, 1947), Preface, p. VIII.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited