OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 4 — Apr. 1, 2001
  • pp: 948–960

Depolarization and blurring of optical images by biological tissue

Miguel Moscoso, Joseph B. Keller, and George Papanicolaou  »View Author Affiliations


JOSA A, Vol. 18, Issue 4, pp. 948-960 (2001)
http://dx.doi.org/10.1364/JOSAA.18.000948


View Full Text Article

Enhanced HTML    Acrobat PDF (274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a study of the image blurring and depolarization resulting from the transmission of a narrow beam of light through a continuous random medium. We investigate the dependence of image quality degradation and of depolarization on optical thickness, correlation length of the inhomogeneities, and incident polarization state. This is done numerically with a Monte Carlo method based on a transport equation that takes into account polarization of light. We compare our results with those for transport in media with discrete spherical scatterers. We show that depolarization effects are different in these two models of biological tissue.

© 2001 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.7050) Medical optics and biotechnology : Turbid media
(260.5430) Physical optics : Polarization

History
Original Manuscript: July 18, 2000
Revised Manuscript: October 10, 2000
Manuscript Accepted: October 18, 2000
Published: April 1, 2001

Citation
Miguel Moscoso, Joseph B. Keller, and George Papanicolaou, "Depolarization and blurring of optical images by biological tissue," J. Opt. Soc. Am. A 18, 948-960 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-4-948


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Ryan, A. I. Carswell, “Laser beam broadening and depolarization in dense fog,” J. Opt. Soc. Am. 68, 900–908 (1978). [CrossRef]
  2. L. R. Bissonnette, “Imaging through fog and rain,” Opt. Eng. 31, 1045–1052 (1992). [CrossRef]
  3. C. Werner, J. Streicher, H. Herrmann, H. G. Dahn, “Multiple-scattering lidar experiments,” Opt. Eng. 31, 1731–1745 (1992). [CrossRef]
  4. R. F. Tusting, D. L. Davis, “Laser systems and structured illumination for quantitative undersea imaging,” Mar. Technol. Soc. J. 26, 5–12 (1992).
  5. D. T. Delpy, M. Cope, P. Van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988). [CrossRef] [PubMed]
  6. K. M. Yoo, B. B. Das, R. R. Alfano, “Imaging of translucent object hidden in highly scattering medium from the early portion of the diffuse component of a transmitted ultrafast laser pulse,” Opt. Lett. 17, 958–960 (1992). [CrossRef] [PubMed]
  7. V. Sankaran, K. Schönenberger, J. T. Walsh, D. J. Maitland, “Polarization discrimination of coherently propagating light in turbid media,” Appl. Opt. 38, 4252–4261 (1999). [CrossRef]
  8. S. R. Arridge, J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997). [CrossRef] [PubMed]
  9. J. Przeslawski, K. Michielsen, H. DeRaedt, N. Garcia, “Computer simulation of time-resolved optical imaging of objects hidden in turbid media,” Phys. Rep. 304, 90–144 (1998).
  10. O. Dorn, “A transport–backtransport method for optical tomography,” Inverse Probl. 14, 1107–1130 (1998). [CrossRef]
  11. S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000). [CrossRef] [PubMed]
  12. J. M. Schmitt, A. H. Gandjbakche, R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992). [CrossRef] [PubMed]
  13. M. P. Rowe, E. N. Pungh, J. S. Tyo, N. Engheta, “Polarization-difference imaging: a biologically inspired technique for observation through scattering media,” Opt. Lett. 20, 608–610 (1995). [CrossRef] [PubMed]
  14. S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996). [CrossRef] [PubMed]
  15. J. M. Schmitt, G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996). [CrossRef] [PubMed]
  16. F. C. Mackintosh, S. John, “Diffusing-wave spectros-copy and multiple-scattering of light in correlated random media,” Phys. Rev. B 40, 2383–2406 (1989). [CrossRef]
  17. F. C. Mackintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989). [CrossRef]
  18. D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994). [CrossRef]
  19. S. Chandrasekhar, Radiative Transfer (Oxford U. Press, Oxford, UK, 1960).
  20. L. E. Mertens, F. S. Replogle, “Use of point spread and beam spread functions for analysis of imaging systems in water,” J. Opt. Soc. Am. 67, 1105–1117 (1977). [CrossRef]
  21. T. Aruga, T. Igarashi, “Narrow beam light transfer in small particles: image blurring and depolarization,” Appl. Opt. 20, 2698–2705 (1981). [CrossRef] [PubMed]
  22. Y. Kuga, A. Ishimaru, “Modulation transfer function and image transmission through randomly distributed spherical particles,” J. Opt. Soc. Am. A 2, 2330–2335 (1985). [CrossRef]
  23. L. Ryzhik, G. Papanicolaou, J. B. Keller, “Transport equations for elastic and other waves in random media,” Wave Motion 24, 327–370 (1996). [CrossRef]
  24. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  25. B. Beauvoit, T. Kitai, B. Chance, “Contribution to the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501–2510 (1994). [CrossRef] [PubMed]
  26. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998). [CrossRef]
  27. G. N. Plass, G. W. Kattawar, “Monte Carlo calculations of light scattering from clouds,” Appl. Opt. 7, 415–419 (1968). [CrossRef] [PubMed]
  28. R. R. Meier, “Atmospheric scattering of middle UV radiation from an internal source,” Appl. Opt. 17, 3216–3225 (1978). [CrossRef] [PubMed]
  29. B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824 (1983). [CrossRef] [PubMed]
  30. E. Tinet, S. Avrillier, M. Tualle, “Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media,” J. Opt. Soc. Am. A 13, 1903–1915 (1996). [CrossRef]
  31. G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031–2041 (1991). [CrossRef] [PubMed]
  32. G. W. Kattawar, G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7, 1519–1527 (1968). [CrossRef] [PubMed]
  33. P. Bruscaglioni, G. Zaccanti, Q. Wei, “Transmission of a pulse polarized light beam through thick turbid media: numerical results,” Appl. Opt. 32, 6142–6150 (1993). [CrossRef] [PubMed]
  34. G. Bal, G. Papanicolaou, L. Ryzhik, “Probabilistic theory of transport processes with polarization,” SIAM (Soc. Ind. Appl. Math.) J. Math. Anal. 60, 1639–1666 (2000). [CrossRef]
  35. M. H. Kalos, P. A. Whitlock, Monte Carlo Methods (Wiley, New York, 1986).
  36. E. E. Lewis, W. F. Miller, Computational Methods of Neutron Transport (Wiley, New York, 1984).
  37. G. Bal, M. Moscoso, “Theoretical and numerical analysis of polarization for time dependent radiative transfer equations,” J. Quant. Spectrosc. Radiat. Transf. (to be published).
  38. G. Bal, M. Moscoso, “Polarization effects of seismic waves on the basis of radiative transport theory,” Geophys. J. Int. (to be published).
  39. M. H. Kalos, “On the estimation of flux at a point by Monte Carlo,” Nucl. Sci. Eng. 16, 111–117 (1963).
  40. H. A. Steinberg, M. H. Kalos, “Bounded estimators for flux at a point in Monte Carlo,” Nucl. Sci. Eng. 44, 406–412 (1971).
  41. H. Iida, Y. Seki, “Simple method of eliminating infinite variance in point detector problem of Monte Carlo calculation,” J. Nucl. Sci. Technol. 17, 315–317 (1980). [CrossRef]
  42. S. Chatigny, M. Morin, D. Asselin, Y. Painchaud, P. Beaudry, “Hybrid Monte Carlo for photon transport through optically thick scattering media,” Appl. Opt. 38, 6075–6086 (1999). [CrossRef]
  43. W. F. Cheong, “Summary of optical properties,” in Optical–Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 275–303.
  44. E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1976).
  45. W. G. Egan, W. R. Johnson, V. S. Whitehead, “Terrestrial polarization imagery obtained from the Space Shuttle: characterization and interpretation,” Appl. Opt. 30, 435–442 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited