OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 5 — May. 1, 2001
  • pp: 1016–1026

Information limit on the spatial integration of local orientation signals

Steven C. Dakin  »View Author Affiliations


JOSA A, Vol. 18, Issue 5, pp. 1016-1026 (2001)
http://dx.doi.org/10.1364/JOSAA.18.001016


View Full Text Article

Enhanced HTML    Acrobat PDF (1240 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Channel-based models of human spatial vision require that the output of spatial filters be pooled across space. This pooling yields global estimates of local feature attributes such as orientation that are useful in situations in which that attribute may be locally variable, as is the case for visual texture. The spatial characteristics of orientation summation are considered in the study. By assessing the effect of orientation variability on observers’ ability to estimate the mean orientation of spatially unstructured textures, one can determine both the internal noise on each orientation sample and the number of samples being pooled. By a combination of fixing and covarying the size of textured regions and the number of elements constituting them, one can then assess the effects of the texture’s size, density, and numerosity (the number of elements present) on the internal noise and the sampling density. Results indicate that internal noise shows a primary dependence on texture density but that, counterintuitively, subjects rely on a sample size approximately equal to a fixed power of the number of samples present, regardless of their spatial arrangement. Orientation pooling is entirely flexible with respect to the position of input features.

© 2001 Optical Society of America

OCIS Codes
(330.5000) Vision, color, and visual optics : Vision - patterns and recognition
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6110) Vision, color, and visual optics : Spatial filtering

History
Original Manuscript: August 1, 2000
Revised Manuscript: November 14, 2000
Manuscript Accepted: November 15, 2000
Published: May 1, 2001

Citation
Steven C. Dakin, "Information limit on the spatial integration of local orientation signals," J. Opt. Soc. Am. A 18, 1016-1026 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-5-1016


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and function architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962). [PubMed]
  2. A. B. Watson, “Summation of grating patches indicates many types of detectors at one retinal location,” Vision Res. 22, 17–25 (1982). [CrossRef]
  3. I. Fogel, D. Sagi, “Gabor filters as texture discriminator,” Biol. Cybern. 61, 103–113 (1989). [CrossRef]
  4. A. Bovik, M. Clark, W. Geisler, “Multi-channel texture analysis using localised spatial filters,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 55–73 (1990). [CrossRef]
  5. J. Malik, P. Perona, “Preattentive texture discrimination with early visual mechanisms,” J. Opt. Soc. Am. A 7, 923–932 (1990). [CrossRef] [PubMed]
  6. J. R. Bergen, M. S. Landy, “Computational modeling of visual texture segmentation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991).
  7. E. R. Howell, R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978). [CrossRef] [PubMed]
  8. J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981). [CrossRef] [PubMed]
  9. N. V. S. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).
  10. M. J. Mayer, C. W. Tyler, “Invariance of the slope of the psychometric function with spatial summation,” J. Opt. Soc. Am. A 3, 1166–1172 (1986). [CrossRef] [PubMed]
  11. T. S. Meese, C. B. Williams, “Probability summation for multiple patches of luminance modulation,” Vision Res. 40, 2101–2113 (2000). [CrossRef] [PubMed]
  12. P. Verghese, L. S. Stone, “Perceived visual speed constrained by image segmentation,” Nature 381, 161–163 (1996). [CrossRef] [PubMed]
  13. U. Polat, C. W. Tyler, “What pattern the eye sees best,” Vision Res. 39, 887–895 (1999). [CrossRef] [PubMed]
  14. P. Verghese, S. N. J. Watnmaniuk, S. P. McKee, N. M. Grzywacz, “Local motion detectors cannot account for the detectability of an extended trajectory in noise,” Vision Res. 39, 19–30 (1999). [CrossRef] [PubMed]
  15. D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field’,” Vision Res. 33, 173–193 (1993). [CrossRef] [PubMed]
  16. R. F. Hess, S. C. Dakin, “Absence of contour linking in peripheral vision,” Nature (London) 390, 602–604 (1997). [CrossRef]
  17. S. C. Dakin, R. J. Watt, “The computation of orientation statistics from visual texture,” Vision Res. 37, 3181–3192 (1997). [CrossRef]
  18. F. A. Kingdom, D. R. Keeble, “On the mechanism for scale invariance in orientation-defined textures,” Vision Res. 39, 1477–1489 (1999). [CrossRef] [PubMed]
  19. H. C. Nothdurft, “Sensitivity for structure gradient in texture discrimination tasks,” Vision Res. 25, 1957–1968 (1985). [CrossRef] [PubMed]
  20. M. S. Landy, J. R. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991). [CrossRef] [PubMed]
  21. D. Sagi, B. Julesz, “Short-range limitation on detection of feature differences,” Spatial Vision 2, 39–49 (1987). [CrossRef] [PubMed]
  22. M. J. Morgan, R. M. Ward, E. Castet, “Visual search for a tilted target: tests of spatial uncertainty models,” Q. J. Exp. Psychology A 51, 347–370 (1998). [CrossRef]
  23. H. C. Nothdurft, C. Y. Li, “Texture discrimination: representation of orientation and luminance differences in cells of the cat striate cortex,” Vision Res. 25, 99–113 (1985). [CrossRef] [PubMed]
  24. A. Gorea, T. V. Papathomas, “Local versus global contrasts in texture segregation,” J. Opt. Soc. Am. A 16, 728–741 (1999). [CrossRef]
  25. H. B. Barlow, “Retinal noise and absolute threshold,” J. Opt. Soc. Am. A 46, 634–639 (1956). [CrossRef]
  26. H. B. Barlow, “Increment thresholds at low intensities considered as signal/noise discrimination,” J. Physiol. (London) 136, 469–488 (1957).
  27. Y. Y. Zeevi, S. S. Mangoubi, “Vernier acuity with noisy lines: estimation of relative position uncertainty,” Biol. Cybern. 50, 371–376 (1984). [CrossRef] [PubMed]
  28. R. J. Watt, R. F. Hess, “Spatial information and uncertainty in anisometropic amblyopia,” Vision Res. 27, 661–674 (1987). [CrossRef] [PubMed]
  29. R. J. Watt, M. J. Morgan, “The recognition and representation of edge blur: evidence for spatial primitives in human vision,” Vision Res. 23, 1465–1477 (1983). [CrossRef] [PubMed]
  30. D. W. Heeley, “Spatial frequency discrimination for sinewave gratings with random, bandpass frequency modulation: evidence for averaging in spatial acuity,” Spatial Vision 2, 317–335 (1987). [CrossRef] [PubMed]
  31. D. G. Pelli, “The quantum efficiency of vision,” in Vision Coding and Efficiency, C. Blakemore, ed. (Cambridge U. Press, Cambridge, UK, 1990).
  32. A. J. J. Ahumada, A. B. Watson, “Equivalent-noise model for contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1133–1139 (1985). [CrossRef] [PubMed]
  33. R. F. Hess, S. C. Dakin, “Contour integration in the peripheral field,” Vision Res. 39, 947–959 (1999). [CrossRef] [PubMed]
  34. R. J. Watt, Understanding Vision (Academic Press, London, UK, 1991).
  35. D. W. Heeley, H. M. Buchanan-Smith, J. A. Cromwell, J. S. Wright, “The oblique effect in orientation acuity,” Vision Res. 37, p. 235–242 (1997). [CrossRef]
  36. Z. L. Lu, B. A. Dosher, “External noise distinguishes attention mechanisms,” Vision Res. 38, 1183–1198 (1998). [CrossRef] [PubMed]
  37. D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vision 10, 433–436 (1997). [CrossRef] [PubMed]
  38. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming number into movies,” Spatial Vision 10, 437–442 (1997). [CrossRef]
  39. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991). [CrossRef] [PubMed]
  40. D. W. Heeley, H. M. Buchanan-Smith, “Recognition of stimulus orientation,” Vision Res. 32, 719–743 (1990).
  41. D. C. Burr, S. A. Wijesundra, “Orientation discrimination depends on spatial frequency,” Vision Res. 31, 1449–1452 (1991). [CrossRef] [PubMed]
  42. R. J. Watt, D. Andrews, “APE: Adaptive probit estimation of psychometric functions,” Current Psychol. Rev. 1, 205–214 (1981). [CrossRef]
  43. D. H. Foster, W. F. Bischof, “Bootstrap estimates of the statistical accuracy of thresholds obtained from psychometric functions,” Spatial Vision 11, 135–139 (1997). [PubMed]
  44. S. He, P. Cavanagh, J. Intriligator, “Attentional resolution and the locus of visual awareness,” Nature 383, 334–347 (1996). [CrossRef] [PubMed]
  45. J. S. Joseph, M. M. Chun, K. Nakayama, “Attentional requirements in a ‘preattentive’ feature search task,” Nature 387, 805–807 (1997). [CrossRef] [PubMed]
  46. S. J. M. Rainville, F. A. A. Kingdom, “The functional role of oriented spatial filters in the perception of mirror symmetry,” Vision Res. 40, 2621–2644 (2000). [CrossRef]
  47. P. Verghese, D. G. Pelli, “The information capacity of visual attention,” Vision Res. 32, 983–995 (1992). [CrossRef] [PubMed]
  48. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988). [CrossRef] [PubMed]
  49. H. R. Wilson, P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Vision Res. 9, 79–97 (1992).
  50. S. C. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000). [CrossRef] [PubMed]
  51. I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci., 3, 527–540 (1999).
  52. J. J. Knierim, D. C. van Essen, “Neuronal responses to static texture patterns in area V1 of the alert macaque monkey,” J. Neurophysiol. 67, 961–980 (1992). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited