OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 5 — May. 1, 2001
  • pp: 1112–1121

Geometrical renormalization approach to calculating optical properties of fractal carbonaceous soot

Vadim A. Markel and Vladimir M. Shalaev  »View Author Affiliations

JOSA A, Vol. 18, Issue 5, pp. 1112-1121 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (268 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a theoretical approach to calculating optical properties of carbonaceous soot in the long-wavelength limit. Our method is based on geometrical renormalization of clusters; it avoids both the inaccuracy of the dipole approximation in its pure form and the numerical complexity of rigorous direct methods of solving the EM boundary problem. The results are verified by comparison with the experimental measurements for specific extinction of diesel soot in the spectral region from 0.488 µm to 0.857 cm that were performed by Bruce et al. [Appl. Opt. 30, 1537 (1991)]. The theory leads to analytical expressions that are applicable to different soots, with various geometrical properties and optical constants. We show that the functional form of the long-wavelength asymptote of the specific extinction can depend critically on a parameter characterizing the sample geometry, and we identify the critical value of this parameter.

© 2001 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(290.1090) Scattering : Aerosol and cloud effects
(290.2200) Scattering : Extinction
(290.3770) Scattering : Long-wave scattering

Original Manuscript: June 15, 2000
Revised Manuscript: November 3, 2000
Manuscript Accepted: November 8, 2000
Published: May 1, 2001

Vadim A. Markel and Vladimir M. Shalaev, "Geometrical renormalization approach to calculating optical properties of fractal carbonaceous soot," J. Opt. Soc. Am. A 18, 1112-1121 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. R. Forrest, T. A. Witten, “Long-range correlations in smoke-particle aggregates,” J. Phys. A 12, L109–L117 (1979). [CrossRef]
  2. H. X. Zhang, C. M. Sorensen, E. R. Ramer, B. J. Olivier, J. F. Merklin, “In situ optical structure factor measurements of an aggregating soot aerosol,” Langmuir 4, 867–871 (1988). [CrossRef]
  3. U. O. Koylu, G. M. Faeth, “Structure of overfire soot in buoyant turbulent diffusion flames at long residence times,” Combust. Flame 89, 140–156 (1992). [CrossRef]
  4. J. Cai, N. Lu, C. M. Sorensen, “Comparison of size and morphology of soot aggregates as determined by light scattering and electron microscope analysis,” Langmuir 9, 2861–2867 (1993). [CrossRef]
  5. M. V. Berry, I. C. Percival, “Optics of fractal clusters such as smoke,” Opt. Acta 33, 577–591 (1986). [CrossRef]
  6. W. H. Dalzell, A. F. Sarofim, “Optical constants of soot and their application to heat-flux calculations,” Trans. ASME, Ser. C: J. Heat Transfer 91, 100–104 (1969). [CrossRef]
  7. G. W. Mulholland, C. F. Bohren, K. A. Fuller, “Light scattering by agglomerates: coupled electric and magnetic dipole method,” Langmuir 10, 2533–2546 (1994). [CrossRef]
  8. D. W. Mackowski, “Electrostatics analysis of radiative absorption by sphere clusters in the Rayleigh limit: application to soot particles,” Appl. Opt. 34, 3535–3545 (1995). [CrossRef] [PubMed]
  9. C. W. Bruce, T. F. Stromberg, K. P. Gurton, J. B. Mozer, “Trans-spectral absorption and scattering of electromagnetic radiation by diesel soot,” Appl. Opt. 30, 1537–1546 (1991). [CrossRef] [PubMed]
  10. L. S. Markel, V. A. Muratov, M. I. Stockman, “Optical properties of fractals: theory and numerical simulation,” Sov. Phys. JETP 71, 455–464 (1990).
  11. V. A. Markel, L. S. Muratov, M. I. Stockman, T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991). [CrossRef]
  12. V. M. Shalaev, R. Botet, R. Jullien, “Resonant light scattering by fractal clusters,” Phys. Rev. B 44, 12,216–12,225 (1991). [CrossRef]
  13. V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal Dielectric Films (Springer-Verlag, Berlin, 2000).
  14. J. M. Gerardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. The long-wave limit,” Phys. Rev. B 22, 4950–4959 (1980). [CrossRef]
  15. F. Claro, “Absorption spectrum of neighboring dielectric grains,” Phys. Rev. B 25, 7875–7876 (1982). [CrossRef]
  16. R. Rojas, F. Claro, “Electromagnetic response of an array of particles: normal-mode theory,” Phys. Rev. B 34, 3730–3736 (1986). [CrossRef]
  17. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. I. Theory for external aggregation,” J. Opt. Soc. Am. A 11, 3251–3260 (1994). [CrossRef]
  18. F. J. G. de Abajo, “Interaction of radiation and fast electrons with clusters and dielectrics: a multiple scattering approach,” Phys. Rev. Lett. 82, 2776–2779 (1999). [CrossRef]
  19. F. J. G. de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60, 6086–6102 (1999). [CrossRef]
  20. J. E. Sansonetti, J. K. Furdyna, “Depolarization effects in arrays of spheres,” Phys. Rev. B 22, 2866–2874 (1980). [CrossRef]
  21. F. Claro, “Theory of resonant modes in particulate matter,” Phys. Rev. B 30, 4989–4999 (1984). [CrossRef]
  22. F. Claro, “Multipolar effects in particulate matter,” Solid State Commun. 49, 229–232 (1984). [CrossRef]
  23. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996). [CrossRef]
  24. V. A. Markel, V. M. Shalaev, “Computational approaches in optics of fractal clusters,” in Computational Studies of New Materials, D. A. Jelski, T. F. George, eds. (World Scientific, Singapore, 1999), pp. 210–243.
  25. E. A. Taft, E. A. Philipp, “Optical properties of graphite,” Phys. Rep. 138, A197–A202 (1965).
  26. Z. G. Habib, P. Vervisch, “On the refractive index of soot at flame temperatures,” Combust. Sci. Technol. 59, 261–274 (1988). [CrossRef]
  27. S. C. Lee, C. L. Tien, “Optical constants of soot in hydrocarbon flames,” in Eighteenth Symposium (International) on Combustion, (The Combustion Institute, Pittsburgh, Pa., 1981), pp. 1159–1166.
  28. X and δ used in Refs. 11 and 10 differ from the dimensionless parameters defined below by a multiplicative factor with the dimensionality of length cubed.
  29. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994). [CrossRef]
  30. P. Meakin, “Formation of fractal clusters and networks by irreversible diffusion-limited aggregation,” Phys. Rev. Lett. 51, 1119–1122 (1983). [CrossRef]
  31. R. Jullien, M. Kolb, R. Botet, “Aggregation by kinetic clustering of clusters in dimensions d>2,” J. Phys. (France) 45, L211–L216 (1984).
  32. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  33. E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973). [CrossRef]
  34. B. Draine, P. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). [CrossRef]
  35. V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole chain,” J. Mod. Opt. Soc. Am. B 40, 2281–2291 (1993). [CrossRef]
  36. A finite linear chain of touching spheres with multipole interaction was considered by Mackowski.8 It was found numerically that, in general, such a chain is not equivalent to a spheroid with the same aspect ratio. The intersection parameter that gives the same depolarization coefficient for an infinite chain of spheres as in an infinite cylinder may be different with the multipole interactions included from that in the dipole approximation.
  37. V. A. Markel, “Scattering of light from two interacting spherical particles,” J. Mod. Opt. 39, 853–861 (1992). [CrossRef]
  38. V. A. Markel, “Antisymmetrical optical states,” J. Opt. Soc. Am. B 12, 1783–1791 (1995). [CrossRef]
  39. T. A. Witten, L. M. Sander, “Diffusion-limited aggregation, a kinetic critical phenomenon,” Phys. Rev. Lett. 47, 1400–1403 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited