OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 5 — May. 1, 2001
  • pp: 1171–1175

Theory and measurement of Young's modulus radial profiles of bent single-mode optical fibers with the multiple-beam interference technique

Fouad El-Diasty  »View Author Affiliations


JOSA A, Vol. 18, Issue 5, pp. 1171-1175 (2001)
http://dx.doi.org/10.1364/JOSAA.18.001171


View Full Text Article

Acrobat PDF (296 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multiple-beam Fizeau fringes in transmission have been applied to the study of the nonlinear stress–strain relationship due to bending in the cladding of single-mode optical fibers. The present study yields a relation between the variation of refractive indices of bent single-mode fibers, represented by the fringe shift, and the nonlinear radial change of Young’s modulus along the fiber cross section. Experimentally, the study confirms the nonlinear asymmetric stress–strain relation across the fiber cross section. This relation is due to the asymmetric distribution of the compression and tensile stresses over the fiber cross section rather than to the shift in the centroid (neutral axis).

© 2001 Optical Society of America

OCIS Codes
(000.2190) General : Experimental physics
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2400) Fiber optics and optical communications : Fiber properties
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry

Citation
Fouad El-Diasty, "Theory and measurement of Young's modulus radial profiles of bent single-mode optical fibers with the multiple-beam interference technique," J. Opt. Soc. Am. A 18, 1171-1175 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-5-1171


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. A. Varshneya, Fundamentals of Inorganic Glasses, 1st ed. (Academic, New York, 1994).
  2. S. Timoshenko, Strength of Materials, 1st ed. (Van Nostrand, New York, 1980), pp. 189–249.
  3. R. D. Maurer, “Strength of optical fibers,” Appl. Phys. Lett. 27, 220–224 (1975).
  4. J. T. Krause, “Zero stress strength reduction and transitions in static fatigue of fused silica fiber lightguides,” J. Non-Cryst. Solids 38–39, 497–502 (1980).
  5. P. C. Bouten and H. M. Wagemanns, “Double mardrel: a modified technique for studying static fatigue of optical fibers,” Electron. Lett. 20, 280–281 (1984).
  6. S. F. Cowap and S. D. Brown, “Static fatigue testing of a hermetically sealed optical fiber,” Am. Ceram. Soc. Bull. 63, 495–497 (1984).
  7. C. R. Kurkjian and U. C. Paek, “Single-valued strength of ‘perfect’ silica fibers,” Appl. Phys. Lett. 42, 251–253 (1983).
  8. J. E. Ritter, Jr., “Probability of fatigue failure in glass fibers,” Fiber Integr. Opt. 1, 387–399 (1978).
  9. S. Sakaguchi, Y. Sawaki, Y. Abe, and T. Kawasaki, “Delayed failure in silica glass,” J. Mater. Sci. 17, 2878–2886 (1982).
  10. J. E. Ritter, Jr., and C. L. Sherburne, “Dynamic and static failure of silicate glasses,” J. Am. Ceram. Soc. 54, 601–605 (1971).
  11. P. L. Key, A. Fox, and E. O. Fuchs, “Mechanical reliability of optical fibers,” J. Non-Cryst. Solids 38–39, 463–468 (1980).
  12. C. R. Kurkjian and D. Inniss, “Understanding mechanical properties of lightguides: a commentary,” Opt. Eng. 30, 681–689 (1991).
  13. F. P. Kapron and H. H. Yuce, “Theory and measurement for predicting stressed fiber lifetime,” Opt. Eng. 30, 700–708 (1991).
  14. G. S. Glaesemann and S. T. Gulati, “Design methodology for the mechanical reliability of optical fiber,” Opt. Eng. 30, 709–715 (1991).
  15. D. B. Keck, “Observation of externally controlled mode coupling in optical waveguides,” Proc. IEEE 62, 649–650 (1974).
  16. W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode conversion coefficients in optical fibers,” Appl. Opt. 14, 1538–1542 (1975).
  17. K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written grating,” Electron. Lett. 26, 1270–1272 (1990).
  18. H. F. Taylor, “Bending effects in optical fibers,” J. Lightwave Technol. LT-2, 617–622 (1984).
  19. A. M. Smith, “Birefringence induced by bends and twists in single-mode optical fiber,” Appl. Opt. 19, 2606–2611 (1980).
  20. D. R. Roberts, E. Cuellar, J. E. Ritter, and T. H. Service, “Design requirements for optical fibers in small radii bends,” J. Mater. Sci. 26, 3197–3201 (1991).
  21. M. J. Matthewson and C. R. Kurkjian, “Static fatigue of optical fibers in bending,” J. Am. Ceram. Soc. 70, 662–668 (1987).
  22. R. Ulrich, S. C. Rashleigh, and W. Eichoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
  23. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66, 216–220 (1976).
  24. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66, 311–320 (1976).
  25. M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength measurement of optical fibers by bending,” J. Am. Ceram. Soc. 69, 815–821 (1986).
  26. Q. Zhang, D. A. Brown, L. J. Reinhart, and T. F. Morse, “Linearly and nonlinearly chirped Bragg gratings fabricated on curved fibers,” Opt. Lett. 20, 1122–1124 (1995).
  27. B. H. Lee and J. Nishii, “Bending sensitivity of in-series long-period fiber grating,” Opt. Lett. 23, 1624–1628 (1998).
  28. L. S. Srubshchik, “Strength measurement of optical fibers by bending,” in Optical Wireless Communications, E. J. Korevaas, ed. Proc. SPIE 3532, 114–121 (1998).
  29. K. Tsujikawa, K. Arakawa, and K. Yoshida, “Reflection of light caused by sharp bends in optical fiber,” IEICE Trans. Electron. E82-C, 2105–2107 (1999).
  30. L. Foustin and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671–679 (1997).
  31. K. Nagano, S. Kawakami, and S. Nishida, “Change of the refractive index in an optical fiber due to external forces,” Appl. Opt. 17, 2080–2085 (1978).
  32. K. Jurgenson, “Dispersion minimum of monomode fibers,” Appl. Opt. 18, 1259–1261 (1979).
  33. H. Gerbel and J. Herskowitz, “Effect of strain in periodically deformed single-mode optical fibers,” Appl. Opt. 26, 2155–2158 (1987).
  34. S. V. Chernikov, F. Koch, J. R. Taylor, and L. Gruner-Nielsen, “Measurement of the effect of bending on dispersion in dispersion-compensating fibers,” in Proceedings of OFC’98, Optical Fiber Communication Conference and Exhibition (Optical Society of America, Washington, D.C., 1998), pp. 23–24.
  35. F. P. Mallinder and B. A. Procter, “Elastic constants of fused silica as a function of large tensile strain,” Phys. Chem. Glasses 5, 91–103 (1964).
  36. T. J. Krause, L. R. Testardi, and R. N. Thurston, “Deviations from linearity in the dependence of elongation upon force for fibers of simple glass formers and of glass optical lightguides,” Phys. Chem. Glasses 20, 135–139 (1979).
  37. G. S. Glasemann, S. T. Gulati, and J. D. Helfinstine, “Effect of strain and surface composition on Young’s modulus of optical fibers,” in Proceedings of the 11th Optical Fiber Communication Conference, Vol. 1 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 26.
  38. W. Griffioen, “Effect on nonlinear elasticity on measured fatigue data and lifetime estimations of optical fibers,” J. Am. Ceram. Soc. 75, 2692–2696 (1992).
  39. E. Suhir, “Effect of the nonlinear stress–strain relationship on the maximum stress in silica fibers subjected to two-point bending,” Appl. Opt. 32, 1567–1572 (1993).
  40. N. Barakat, A. A. Hamza, and A. S. Goneid, “Multiple-beam interference fringes applied to GRIN optical waveguides to determine fiber characteristics,” Appl. Opt. 24, 4383–4386 (1985).
  41. H. El-Hennawi, F. El-Diasty, and O. Meshrif, “Interferometric determination of the refractive index of optical fiber cladding and an examination of its homogeneity.” J. Appl. Phys. 62, 4931–4933 (1987).
  42. N. Barakat, H. A. El-Hennawi, and F. El-Diasty, “Multiple-beam interference fringes applied to GRIN optical fiber,” J. Appl. Phys. 27, 5090–5094 (1988).
  43. N. Barakat, H. A. El-Hennawi, and H. E. Sobeah, “Multiple-beam interferometric studies on optical fibers,” Pure Appl. Opt. 2, 419–428 (1993).
  44. F. El-Diasty, “Interferometric determination of induced birefringence due to bending in single-mode optical fibers,” J. Opt. A Pure Appl. Opt. 1, 197–200 (1999).
  45. F. El-Diasty, “Interferometric characterization of single-mode optical fibers,” J. Appl. Phys. 87, 3254–3257 (2000).
  46. F. El-Diasty, “Multiple-beam interferometric determination of Poisson’s ratio and strain distribution profiles along the cross section of bent single-mode optical fibers,” Appl. Opt. 39, 3197–3201 (2000).
  47. A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited