OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 6 — Jun. 1, 2001
  • pp: 1231–1239

Blur tolerance for luminance and chromatic stimuli

Sophie M. Wuerger, Huw Owens, and Steve Westland  »View Author Affiliations

JOSA A, Vol. 18, Issue 6, pp. 1231-1239 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (170 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the blur tolerance of human observers for stimuli modulated along the isoluminant red–green, the isoluminant yellow–blue, and the luminance (black–white) direction in color space. We report the following results: (i) Blur difference thresholds for red–green and luminance stimuli (of equal cone contrast) are very similar and as low as 0.5 min of visual angle; for yellow–blue the lowest blur thresholds are much higher (1.5 min of visual angle). (ii) The smallest blur thresholds are found for slightly blurred square waves (reference blur of 1 arc min) and not for sharp edges. (iii) Blur thresholds for red–green and black–white follow a Weber law for reference (pedestal) blurs greater than the optimum blur. (iv) Using the model proposed by WattMorgan [Vision Res. 24, 1387 (1984)] we estimated the internal blur of the visual system for the black–white and the red–green color directions and arrived at the following estimates: 1.2 arc min for black–white stimuli at 10% contrast and 0.9 arc min for red–green stimuli at 10% cone contrast. Blur tolerance for yellow–blue is independent of external blur and cannot be predicted by the model. (v) The contrast dependence of blur sensitivity is similar for red–green and luminance modulations (slopes of -0.15 and -0.16 in log–log coordinates, respectively) and slightly stronger for yellow–blue (slope=-0.75). Blur discrimination thresholds are not predicted by the contrast sensitivity function of the visual system. Our findings are useful for predicting blur tolerance for complex images and provide a spatial frequency cutoff point when Gaussian low-pass filters are used for noise removal in colored images. They are also useful as a baseline for the study of visual disorders such as amblyopia.

© 2001 Optical Society of America

OCIS Codes
(330.1070) Vision, color, and visual optics : Vision - acuity
(330.1720) Vision, color, and visual optics : Color vision
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6130) Vision, color, and visual optics : Spatial resolution

Original Manuscript: July 20, 2000
Revised Manuscript: December 12, 2000
Manuscript Accepted: January 2, 2001
Published: June 1, 2001

Sophie M. Wuerger, Huw Owens, and Steve Westland, "Blur tolerance for luminance and chromatic stimuli," J. Opt. Soc. Am. A 18, 1231-1239 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Westheimer, “Spatial interaction in human cone vision,” J. Physiol. 190, 193–154 (1967).
  2. D. Marimont, B. Wandell, “Matching color images: the effects of chromatic aberration,” J. Opt. Soc. Am. A 12, 3113–3122 (1993).
  3. B. Wandell, Foundations of Vision (Sinauer Associates, Inc., Sunderland, Mass., 1993).
  4. C. R. Ingling, P. W. Russell, M. S. Rea, B. H. Tsou, “Red–green opponent spectral sensitivity: disparity between cancellation and direct matching methods,” Science 201, 1221–1223 (1978). [CrossRef] [PubMed]
  5. C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983). [CrossRef]
  6. R. L. DeValois, K. K. DeValois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993). [CrossRef]
  7. R. L. DeValois, H. Morgan, D. M. Snodderly, “Psychophysical studies of monkey vision—III. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75–81 (1974). [CrossRef]
  8. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984). [PubMed]
  9. P. Lennie, J. Krauskopf, G. Schlar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990). [PubMed]
  10. R. M. Shapley, “Visual sensitivity and parallel retinocortical channels,” Ann. Rev. Psychol. 41, 635–658 (1990). [CrossRef]
  11. D. Levi, S. Klein, “Equivalent intrinsic blur in amblyopia,” Vision Res. 30, 1995–2022 (1990). [CrossRef] [PubMed]
  12. L. Kiorpes, D. Kiper, L. O’Keefe, J. R. Cavanagh, J. A. Movshon, “Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia,” J. Neurosci. 18, 6411–6424 (1998). [PubMed]
  13. S. J. Cropper, “Detection of chromatic and luminance contrast modulation by the visual system,” J. Opt. Soc. Am. A 15, 1969–1986 (1998). [CrossRef]
  14. R. T. Eskew, C. F. Stromeyer, R. E. Kronauer, “Temporal properties of the red-green chromatic mechanism,” Vision Res. 34, 3127–3137 (1994). [CrossRef] [PubMed]
  15. D. C. Burr, A. Fiorentini, C. Morrone, “Reaction time to motion onset of luminance and chromatic gratings is determined by perceived speed,” Vision Res. 38, 3681–3690 (1998). [CrossRef]
  16. R. F. Hess, J. S. Pointer, R. J. Watt, “How are spatialfilters used in fovea and parafovea?” J. Opt. Soc. Am. A 6, 329–339 (1989). [CrossRef] [PubMed]
  17. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).
  18. D. Travis, Effective Color Displays (Academic, London, 1990).
  19. D. Brainard, “Cone contrast and opponent modulation color spaces,” in Human Color Vision, P. K. Kaiser, R. M. Boynton, eds. (Optical Society of America, Washington, D.C., 1996), pp. 563–579.
  20. S. M. Wuerger, M. J. Morgan, “The input of the long- and medium-wavelength-sensitive cones to orientation discrimination,” J. Opt. Soc. Am. A 16, 436–442 (1999). [CrossRef]
  21. S. M. Wuerger, “Colour appearance changes resulting from isoluminant chromatic adaptation,” Vision Res. 36, 3107–3118 (1996). [CrossRef] [PubMed]
  22. H. Irtel, “Computing data for color-vision modeling,” Behav. Res. Methods Instrum. Comput. 24, 397–401 (1992). [CrossRef]
  23. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975). [CrossRef] [PubMed]
  24. H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971). [CrossRef]
  25. R. J. Watt, M. J. Morgan, “The recognition and representation of edge blur: evidence for spatial primitives in human vision,” Vision Res. 23, 1465–1477 (1983). [CrossRef] [PubMed]
  26. R. J. Watt, M. J. Morgan, “Spatial filters and the localization of luminance changes in human vision,” Vision Res. 24, 1387–1397 (1984). [CrossRef] [PubMed]
  27. D. Levi, S. Klein, “Equivalent intrinsic blur in spatial vision,” Vision Res. 30, 1971–1993 (1990). [CrossRef] [PubMed]
  28. S. A. Glantz, Primer of Biostatistics, 4th ed. (McGraw-Hill, New York, 1997).
  29. P. Lennie, J. Pokorny, V. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993). [CrossRef] [PubMed]
  30. J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991). [CrossRef] [PubMed]
  31. T. E. Reisbeck, K. R. Gegenfurtner, “Effects of contrast and temporal frequency on orientation discrimination,” Vision Res. 38, 1105–1117 (1998). [CrossRef] [PubMed]
  32. P. Martini, M. C. Morrone, D. Burr, “Sensitivity to spatial phase at equiluminance,” Vision Res. 36, 1153–1162 (1996). [CrossRef] [PubMed]
  33. R. J. Watt, Visual Processing: Computational, Psychophysical and Cognitive Research (Erlbaum, London, 1988).
  34. A. K. Pääkkönen, M. J. Morgan, “Effects of motion on blur discrimination,” J. Opt. Soc. Am. A 11, 992–1002 (1994). [CrossRef]
  35. A. Ahumada, “Computational image quality metrics: A Review,” SID Digest 24, 305–308 (1993).
  36. K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and yellow–blue chromatic gratings,” J. Physiol. (London) 359, 381–400 (1985).
  37. A. J. Ahumada, T. Beard, “A simple vision model for inhomogeneous image quality assessment,” SID Digest 29, 40–41 (1998). [CrossRef]
  38. D. J. Field, N. Brady, “Visual sensitivity, blur, and the sources of variability in the amplitude spectra of natural scenes,” Vision Res. 37, 3367–3383 (1997). [CrossRef]
  39. Y. Tadmor, D. J. Tolhurst, “Discrimination of changes in the second-order statistics of natural and synthetic images,” Vision Res. 34, 541–554 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited