OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 6 — Jun. 1, 2001
  • pp: 1348–1356

Propagation of polychromatic Gaussian beams through thin lenses

Luis Martí-López, Omel Mendoza-Yero, and José A. Ramos-de-Campos  »View Author Affiliations


JOSA A, Vol. 18, Issue 6, pp. 1348-1356 (2001)
http://dx.doi.org/10.1364/JOSAA.18.001348


View Full Text Article

Acrobat PDF (193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The transformation by a lens of a polychromatic laser beam composed of on-axis superposed monochromatic TEM<sub>00</sub> Gaussian modes in the paraxial approximation is studied. The chromatic aberrations are described by allowing the waist position on the <i>z</i> axis and the Rayleigh range to depend on wavelength. The beam radius, the far-field divergence, the Rayleigh range, the beam product, the beam propagation factor, and the kurtosis parameter are calculated. The relationship between the fourth-order and the second-order moments of Hermite–Gaussian and Laguerre–Gaussian modes is obtained and is used for calculating kurtosis parameter. The results are generalized to polychromatic modes of higher orders. It is shown that the on-axis superposition of monochromatic TEM<sub>00</sub> modes with no chromatic aberration is leptokurtic.

© 2001 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(350.5500) Other areas of optics : Propagation

Citation
Luis Martí-López, Omel Mendoza-Yero, and José A. Ramos-de-Campos, "Propagation of polychromatic Gaussian beams through thin lenses," J. Opt. Soc. Am. A 18, 1348-1356 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-6-1348


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Simon, N. Mukunda, and G. C. E. Sudarshan, “Partially coherent beams and a generalized ABCD-law,” Opt. Commun. 65, 322–328 (1988).
  2. L. Shimon, R. Prochaska, and E. Keren, “Generalized beam parameters and transformation laws for partially coherent light,” Appl. Opt. 27, 3696–3703 (1988).
  3. J. Serna, R. Martínez-Herrero, and P. M. Mejías, “Parametric characterization of general partially coherent beams propagating through ABCD optical systems,” J. Opt. Soc. Am. A 8, 1094–1098 (1991).
  4. Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Transformation of pulsed nonideal beams in a four-dimension domain,” Opt. Lett. 18, 669–671 (1993).
  5. P. M. Mejías and R. Martínez-Herrero, “Time-resolved spatial parametric characterization of pulsed light beams,” Opt. Lett. 20, 660–662 (1995).
  6. Q. Cao and D. Ximing, “Spatial parametric characterization of general polychromatic beams,” Opt. Commun. 142, 135–145 (1997).
  7. C. J. R. Sheppard and X. Gan, “Free-space propagation of femtosecond light pulses,” Opt. Commun. 133, 1–6 (1997).
  8. M. A. Porras, “Ultrashort pulsed Gaussian light beams,” Phys. Rev. E 58, 1086–1093 (1998).
  9. O. E. Martínez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
  10. O. E. Martínez, “Matrix formalism for dispersive laser cavities,” IEEE J. Quantum Electron. 25, 296–300 (1989).
  11. A. G. Kostenbauder, “Ray-pulse matrices: a rotational treatment for dispersive optical systems,” IEEE J. Quantum Electron. 26, 1148–1157 (1990).
  12. M. A. Porras, “Propagation of single-cycle pulsed light beams in dispersive media,” Phys. Rev. A 60, 5069–5073 (1999).
  13. L. Martí-López and O. Mendoza-Yero, “Effect of chromatic aberration on Gaussian beams: non-dispersive laser resonators,” Opt. Laser Technol. 31, 239–245 (1999).
  14. A. E. Siegman, “Defining, measuring, and optimizing laser beam quality,” in Laser Resonators and Coherent Optics: Modeling, Technology and Applications, A. Bhowmik, ed., Proc. SPIE 1868, 2–12 (1993).
  15. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986), p. 1267.
  16. W. H. Carter, “Spot size and divergence for Hermite–Gaussian beams of any order,” Appl. Opt. 19, 1027–1029 (1980).
  17. H. P. Kortz, R. Iffländer, and H. Weber, “Stability and beam divergence of multimode lasers with internal variable lenses,” Appl. Opt. 20, 4124–4134 (1981).
  18. M. Y. Klimkov, Osnovy Rasschiota Optiko-Elektronikh Priborov s Lazerami (Fundamentals of Calculus of Optical and Electronic Devices with Lasers) (Sovietskoye Radio, Moscow, 1978), p. 264.
  19. S. A. Self, “Focussing of spherical Gaussian beams,” Appl. Opt. 22, 658–660 (1983).
  20. H. Kogelnik, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
  21. L. Marti-López and O. Mendoza-Yero, “Polychromatic Gaussian beams emitted by dispersive laser resonators,” Opt. Laser Technol. 33, 1–5 (2001).
  22. R. D. Bock, Multivariate Statistical Methods in Behavioral Research (McGraw-Hill, New York, 1975), p. 623.
  23. G. Piquero, P. M. Mejías, and R. Martínez-Herrero, “Sharpness changes of Gaussian beams induced by spherically aberrated lenses,” Opt. Commun. 107, 179–183 (1994).
  24. R. Martínez-Herrero, G. Piquero, and P. M. Mejías, “On the propagation of the kurtosis parameter of general beams,” Opt. Commun. 115, 225–232 (1995).
  25. S. Saghafi and C. J. R. Sheppard, “The beam propagation factor for higher order Gaussian beams,” Opt. Commun. 153, 207–210 (1998).
  26. U. Vokinger, R. Dändliker, P. Blattner, and H. P. Herzig, “Unconventional treatment of focal shift,” Opt. Commun. 157, 218–224 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited