OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 7 — Jul. 1, 2001
  • pp: 1523–1530

Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue

David Hattery, Victor Chernomordik, Murray Loew, Israel Gannot, and Amir Gandjbakhche  »View Author Affiliations


JOSA A, Vol. 18, Issue 7, pp. 1523-1530 (2001)
http://dx.doi.org/10.1364/JOSAA.18.001523


View Full Text Article

Acrobat PDF (236 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An analytical solution is developed to quantify a site-specific fluorophore lifetime perturbation that occurs, for example, when the local metabolic status is different from that of surrounding tissue. This solution may be used when fluorophores are distributed throughout a highly turbid media and the site of interest is embedded many mean scattering distances from the source and the detector. The perturbation in lifetime is differentiated from photon transit delays by random walk theory. This analytical solution requires a priori knowledge of the tissue-scattering and absorption properties at the excitation and emission wavelengths that may be obtained from concurrent time-resolved reflection measurements. Additionally, the solution has been compared with the exact, numerically solved solution. Thus the presented solution forms the basis for practical lifetime imaging in turbid media such as tissue.

© 2001 Optical Society of America

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.5280) Medical optics and biotechnology : Photon migration
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

Citation
David Hattery, Victor Chernomordik, Murray Loew, Israel Gannot, and Amir Gandjbakhche, "Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue," J. Opt. Soc. Am. A 18, 1523-1530 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-7-1523


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
  2. M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
  3. R. Weissleder, C. H. Tung, and U. Mahmood, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
  4. R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
  5. C. Klinteberg, A. M. K. Enejder, I. Wang, S. Andersson-Engels, S. Svanberg, and K. Svanberg, “Kinetic fluorescence studies of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation in basal cell carcinomas,” J. Photochem. Photobiol. B 49, 120–128 (1999).
  6. K. Dowling, M. J. Dayel, S. C. W. Hyde, P. M. W. French, M. J. Lever, J. D. Hares, and A. K. L. Dymoke-Bradshaw, “High resolution time-domain fluorescence lifetime imaging for biomedical applications,” J. Mod. Opt. 46, 199–206 (1999).
  7. R. F. Bonner, R. Nossal, S. Havlin, and G. H. Weiss, “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A 4, 423–432 (1987).
  8. A. H. Gandjbakhche, R. Nossal, and R. F. Bonner, “Resolution limits for optical transillumination of abnormalities embedded in tissues,” Med. Phys. 22, 185–191 (1994).
  9. J. A. Moon and J. Reintjes, “Image resolution by use of multiply scattered light,” Opt. Lett. 19, 521–523 (1994).
  10. A. H. Gandjbakhche and G. H. Weiss, “Random walk and diffusion-like model of photon migration in turbid media,” in Progress in Optics, E. Wolf, ed. (Elsevier North-Holland, Amsterdam, 1995), Vol. 34, pp. 333–402.
  11. E. M. Sevick-Muraca and C. Hutchinson, “Probability description of fluorescent and phosphorescent signal generation in tissues and other random media,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE 2387, 62–70 (1995).
  12. J. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
  13. M. S. Patterson and B. Pogue, “A mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissue,” Appl. Opt. 33, 1963 (1994).
  14. E. M. Sevick-Muraca and C. L. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928–1930 (1994).
  15. A. H. Gandjbakhche, R. F. Bonner, R. Nossal, and G. H. Weiss, “Effects of multiple-passage probabilities on fluorescent signals from biological media,” Appl. Opt. 36, 4613–4619 (1997).
  16. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997).
  17. C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
  18. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
  19. R. H. Mayer, J. S. Reynolds, and E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
  20. D. Y. Paithankar and E. M. Sevick-Muraca, “Fluorescence lifetime imaging with frequency-domain photon migration measurement,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, DC., 1996), pp. 184–194.
  21. H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998).
  22. A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, and E. Gratton, “Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues,” Appl. Opt. 36, 116–124 (1997).
  23. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
  24. J. Wu, Y. Wang, and L. Perelman, “Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy,” Appl. Opt. 34, 3425–3430 (1995).
  25. A. H. Gandjbakhche, R. F. Bonner, R. Nossal, and G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 35, 1767–1774 (1996).
  26. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic/Plenum, New York, 1999).
  27. A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, and R. Nossal, “Time-dependence contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
  28. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Derm. 77, 13–19 (1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited