## Gaussian beam and pulsed-beam dynamics: complex-source and complex-spectrum formulations within and beyond paraxial asymptotics

JOSA A, Vol. 18, Issue 7, pp. 1588-1611 (2001)

http://dx.doi.org/10.1364/JOSAA.18.001588

Enhanced HTML Acrobat PDF (539 KB)

### Abstract

Paraxial Gaussian beams (GB’s) are collimated wave objects that have found wide application in optical system analysis and design. A GB propagates in physical space according to well-established quasi-geometric-optical rules that can accommodate weakly inhomogeneous media as well as reflection from and transmission through curved interfaces and thin-lens configurations. We examine the GB concept from a broad perspective in the frequency domain (FD) and the short-pulse time domain (TD) and within as well as arbitrarily beyond the paraxial constraint. For the formal analysis, which is followed by physics-matched high-frequency asymptotics, we use a (space–time)–(wavenumber–frequency) phase-space format to discuss the exact complex-source-point method and the associated asymptotic beam tracking by means of complex rays, the TD pulsed-beam (PB) ultrawideband wave-packet counterpart of the FD GB, GB’s and PB’s as basis functions for representing arbitrary fields, GB and PB diffraction, and FD–TD radiation from extended continuous aperture distributions in which the GB and the PB bases, installed through windowed transforms, yield numerically compact physics-matched *a priori* localization in the plane-wave-based nonwindowed spectral representations.

© 2001 Optical Society of America

**OCIS Codes**

(080.1510) Geometric optics : Propagation methods

(080.2710) Geometric optics : Inhomogeneous optical media

(130.2790) Integrated optics : Guided waves

(350.7420) Other areas of optics : Waves

**History**

Original Manuscript: September 22, 2000

Revised Manuscript: January 23, 2001

Manuscript Accepted: January 23, 2001

Published: July 1, 2001

**Citation**

Ehud Heyman and Leopold B. Felsen, "Gaussian beam and pulsed-beam dynamics: complex-source and complex-spectrum formulations within and beyond paraxial asymptotics," J. Opt. Soc. Am. A **18**, 1588-1611 (2001)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-7-1588

Sort: Year | Journal | Reset

### References

- J. Fox, ed., Proceedings of the Symposium on Quasi-Optics (Polytechnic, Brooklyn, 1964).
- A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
- P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications, Chapman and Hall Series on Microwave Technology and Techniques (Institute of Electrical and Electronics Engineers, New York, 1998).
- S. Choudhary, L. B. Felsen, “Analysis of Gaussian beam propagation and diffraction by inhomogeneous wave tracking,” Proc. IEEE 62, 1530–1541 (1974). [CrossRef]
- P. D. Einziger, L. B. Felsen, “Evanescent waves and complex rays,” IEEE Trans. Antennas Propag. 30, 594–604 (1982). [CrossRef]
- V. M. Babič, V. S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods, E. F. Kuester, translator (Springer-Verlag, Berlin, 1990) [Russian edition: Asymptotic Methods in Short-Wavelength Diffraction Problems: The Model Problem Method (Nauka, Moscow, 1972)].
- V. M. Babič, N. Y. Kirpičnikova, The Boundary Layer Method in Diffraction Theory, E. F. Kuester, translator (Springer-Verlag, Berlin, 1979).
- H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966). [CrossRef]
- A. E. Siegman, “Hermite–Gaussian functions of complex argument as optical-beam eigenfunctions,” J. Opt. Soc. Am. 63, 1093–1094 (1973). [CrossRef]
- M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975). [CrossRef]
- G. P. Agrawal, M. Lax, “Free-space wave propagation beyond the paraxial approximation,” Phys. Rev. A 27, 1693–1695 (1983). [CrossRef]
- T. Takenaka, M. Yokota, O. Fukumitsu, “Propagation of light beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 2, 826–829 (1985). [CrossRef]
- M. Couture, P. A. Bélanger, “From Gaussian beam tocomplex-source-point spherical wave,” Phys. Rev. A 24, 355–359 (1981). [CrossRef]
- E. Zauderer, “Complex argument Hermite–Gaussian and Laguerre–Gaussian beams,” J. Opt. Soc. Am. A 3, 465–469 (1986). [CrossRef]
- B. T. Landesman, H. H. Barrett, “Gaussian amplitude functions that are exact solutions to the scalar Helmholtz equation,” J. Opt. Soc. Am. A 5, 1610–1619 (1988). [CrossRef]
- A. Wünsche, “Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beams,” J. Opt. Soc. Am. A 9, 765–774 (1992). [CrossRef]
- A. J. Bogush, R. E. Elkins, “Gaussian beam expansions for large aperture antennas,” IEEE Trans. Antennas Propag. 34, 228–243 (1986). [CrossRef]
- E. Heyman, I. Beracha, “Complex multipole pulsed beams and Hermite pulsed beams: a novel expansion scheme for transient radiation from well-collimated apertures,” J. Opt. Soc. Am. A 9, 1779–1793 (1992). [CrossRef]
- Yu. A. Kravtsov, “Complex rays and complex caustics,” Radiophys. Quantum Electron. 10, 719–730 (1967). [CrossRef]
- G. A. Deschamps, “Gaussian beams as a bundle of complex rays,” Electron. Lett. 7, 684–685 (1971). [CrossRef]
- J. W. Ra, H. Bertoni, L. B. Felsen, “Reflection and transmission of beams at dielectric interfaces,” SIAM J. Appl. Math. 24, 396–412 (1973). [CrossRef]
- A. L. Cullen, P. K. Yu, “Complex source-point theory of the electromagnetic open resonator,” Proc. R. Soc. London, Ser. A 366, 155–171 (1979). [CrossRef]
- S. Y. Shin, L. B. Felsen, “Gaussian beam modes by multipoles with complex source points,” J. Opt. Soc. Am. 67, 699–700 (1977). [CrossRef]
- E. Heyman, V. Lomakin, G. Kaiser, “Physical source realization of complex source pulsed beams,” J. Acoust. Soc. Am. 107, 1880–1891 (2000). [CrossRef] [PubMed]
- L. B. Felsen, “Complex-source-point solutions of the field equations and their relation to the propagation and scattering of Gaussian beams,” in Symposia Matematica, Istituto Nazionale di Alta Matematica (Academic, London, 1976), Vol. XVIII, pp. 40–56.
- S. Y. Shin, L. B. Felsen, “Gaussian beams in anisotropic media,” Appl. Phys. 5, 239–250 (1974). [CrossRef]
- L. B. Felsen, “Rays, modes, and beams in optical fiber waveguides,” Opt. Quantum Electron. 9, 189–195 (1977). [CrossRef]
- S. Y. Shin, L. B. Felsen, “Lateral shifts of totally reflected Gaussian beams,” Radio Sci. 12, 551–564 (1977). [CrossRef]
- A. C. Green, H. L. Bertoni, L. B. Felsen, “Properties of the shadow cast by a half-screen when illuminated by a Gaussian beam,” J. Opt. Soc. Am. 69, 1503–1508 (1979). [CrossRef]
- J. B. Keller, W. Streifer, “Complex rays with an application to Gaussian beams,” J. Opt. Soc. Am. 61, 40–43 (1971). [CrossRef]
- W. D. Wang, G. A. Deschamps, “Application of complex ray tracing to scattering problems,” Proc. IEEE 62, 1541–1551 (1974). [CrossRef]
- L. B. Felsen, “Evanescent waves,” J. Opt. Soc. Am. 66, 751–760 (1976). [CrossRef]
- L. B. Felsen, “Real spectra, complex spectra, compact spectra,” J. Opt. Soc. Am. A 3, 486–496 (1986). [CrossRef]
- Yu. A. Kravtsov, G. W. Forbes, A. A. Asatryan, “Theory and applications of complex rays,” in Vol. 39 of Progress in Optics Series (Elsevier, Amsterdam, 1999).
- J. V. Hasselmann, L. B. Felsen, “Asymptotic analysis of parabolic reflector antennas,” IEEE Trans. Antennas Propag. 30, 677–685 (1982). [CrossRef]
- G. Ghione, I. Montrosset, L. B. Felsen, “Complex ray analysis of radiation from large apertures with tapered illumination,” IEEE Trans. Antennas Propag. 32, 689–693 (1984). [CrossRef]
- X. J. Gao, L. B. Felsen, “Complex ray analysis of beam transmission through two-dimensional radomes,” IEEE Trans. Antennas Propag. 33, 963–975 (1985). [CrossRef]
- Y. Z. Ruan, L. B. Felsen, “Reflection and transmission of beams at a curved interface,” J. Opt. Soc. Am. A 3, 566–579 (1986). [CrossRef]
- S. Zeroug, L. B. Felsen, “Nonspecular reflection of beams forms liquid–solid interfaces,” J. Nondestruct. Eval. 11, 263–278 (1992). [CrossRef]
- S. Zeroug, L. B. Felsen, “Nonspecular reflection of two- and three-dimensional acoustic beams from fluid-immersed plane-layered elastic structures,” J. Acoust. Soc. Am. 95, 3075–3089 (1994). [CrossRef]
- T. J. Cloutier, A. Safaeincili, D. E. Chimenti, S. Zeroug, L. B. Felsen, “Ultrasonic beam reflection from fluid-loaded cylindrical shells,” J. Appl. Phys. 83, 2408–2419 (1998). [CrossRef]
- G. A. Suedan, E. V. Jull, “3-dimensional scalar beam diffraction by a half plane,” Comput. Phys. Commun. 68, 346–352 (1991). [CrossRef]
- G. A. Suedan, E. V. Jull, “Beam diffraction by planar and parabolic reflectors,” IEEE Trans. Antennas Propag. 39, 521–527 (1991). [CrossRef]
- H. D. Cheung, E. V. Jull, “Scattering of antenna beams by local cylinders,” J. Electromagn. Waves Appl. 13, 1315–1331 (1999). [CrossRef]
- S. Choudhary, L. B. Felsen, “Asymptotic theory for inhomogeneous waves,” IEEE Trans. Antennas Propag. 21, 827–842 (1973). [CrossRef]
- J. M. Arnold, L. B. Felsen, “Rigorous asymptotic theory of evanescent waves for guided propagation,” J. Acoust. Soc. Am. 67, 757–763 (1980). [CrossRef]
- J. M. Arnold, L. B. Felsen, “Rigorous evanescent wave theory for guided modes in graded index optical fibers,” IEEE Trans. Microwave Theory Tech. 28, 996–999 (1980). [CrossRef]
- B. Z. Steinberg, E. Heyman, L. B. Felsen, “Phase-space beam summation for time-harmonic radiation from large apertures,” J. Opt. Soc. Am. A 8, 41–59 (1991). [CrossRef]
- M. M. Popov, “A new method of computation of wave fields using Gaussian beams,” Wave Motion 4, 85–95 (1982). [CrossRef]
- V. C̆ervený, M. M. Popov, I. Ps̆enc̆hik, “Computation of wave films in inhomogeneous media—Gaussian beam approach,” Geophys. J. R. Astron. Soc. 70, 109–128 (1982). [CrossRef]
- V. C̆ervený, “Gaussian beam synthetic seismograms,” J. Geophys. Res. 58, 44–72 (1985).
- B. S. White, A. Noris, A. Bayliss, R. Burridge, “Some remarks on the Gaussian beam summation method,” Geophys. J. R. Astron. Soc. 89, 579–636 (1987). [CrossRef]
- A. N. Norris, “Complex point-source representation of real sources and the Gaussian beam summation method,” J. Opt. Soc. Am. A 3, 2005–2010 (1986). [CrossRef]
- I. T. Lu, L. B. Felsen, Y. Z. Ruan, “Spectral aspects of the Gaussian beam method: reflection from homogeneous half space,” Geophys. J. R. Astron. Soc. 89, 915–922 (1987). [CrossRef]
- B. Rao, L. Carin, “Hybrid (parabolic equation) (Gaussian beam) algorithm for wave propagation through large inhomogeneous regions,” IEEE Trans. Antennas Propag. 46, 700–709 (1998). [CrossRef]
- B. Rao, L. Carin, “Beam-tracing-based inverse scattering for general aperture antennas,” J. Opt. Soc. Am. A 16, 2219–2231 (1999). [CrossRef]
- M. J. Bastiaans, “The expansion of an optical signal into a discrete set of Gaussian beams,” Optik 57, 95–102 (1980).
- P. D. Einziger, S. Raz, M. Shapira, “Gabor representation and aperture theory,” J. Opt. Soc. Am. A 3, 508–522 (1986). [CrossRef]
- J. J. Maciel, L. B. Felsen, “Systematic study of fields due to extended apertures by Gaussian beam discretization,” IEEE Trans. Antennas Propag. 37, 884–892 (1989). [CrossRef]
- J. J. Maciel, L. B. Felsen, “Gaussian beam analysis of propagation from an extended plane aperture distribution through dielectric layers: I—plane layer,” IEEE Trans. Antennas Propag. 38, 1607–1617 (1990). [CrossRef]
- J. J. Maciel, L. B. Felsen, “Gaussian beam analysis of propagation from an extended plane aperture distribution through dielectric layers: II—circular layer,” IEEE Trans. Antennas Propag. 38, 1618–1624 (1990). [CrossRef]
- Y. Dezhong, “Complex source representation of time harmonic radiation from a plane aperture,” IEEE Trans. Antennas Propag. 43, 720–723 (1995). [CrossRef]
- D. Lugara, C. Letrou, “Alternative to Gabor’s representation of plane aperture radiation,” Electron. Lett. 34, 2286–2287 (1998). [CrossRef]
- A. N. Norris, T. B. Hansen, “Exact complex source representations of time-harmonic radiation,” Wave Motion 25, 127–141 (1997). [CrossRef]
- H. T. Chou, P. H. Pathak, R. J. Burkholder, “Novel Gaussian beam method for the rapid analysis of large reflector antennas,” IEEE Trans. Antennas Propag. (to be published).
- R. J. Burkholder, P. H. Pathak, “Analysis of EM penetration into and scattering by electrically large open waveguide cavities using Gaussian beam shooting,” Proc. IEEE 79, 1401–1412 (1991). [CrossRef]
- J. N. Brittingham, “Focus wave modes in homogeneous Maxwell’s equations: transverse electric mode,” J. Appl. Phys. 54, 1179–1189 (1983). [CrossRef]
- R. W. Ziolkowski, “Exact solutions of the wave equation with complex source locations,” J. Math. Phys. 26, 861–863 (1985). [CrossRef]
- A. M. Shaarawi, I. M. Besieris, R. W. Ziolkowski, S. M. Sedky, “Generation of approximate focus-wave-mode pulses from wide-band dynamic Gaussian apertures,” J. Opt. Soc. Am. A 12, 1954–1964 (1995). [CrossRef]
- E. Heyman, B. Z. Steinberg, L. B. Felsen, “Spectral analysis of focus wave modes,” J. Opt. Soc. Am. A 4, 2081–2091 (1987). [CrossRef]
- E. Heyman, “The focus wave mode: a dilemma with causality,” IEEE Trans. Antennas Propag. 37, 1604–1608 (1989). [CrossRef]
- H. E. Moses, R. T. Prosser, “Initial conditions, sources, and currents for prescribed time-dependent acoustic and electromagnetic fields in three dimensions. Part I: the inverse initial value problem. Acoustic and electromagnetic ‘bullets,’ expanding waves, and implodidng waves,” IEEE Trans. Antennas Propag. 34, 188–196 (1986). [CrossRef]
- H. E. Moses, R. T. Prosser, “Acoustic and electromagnetic bullets. New exact solutions of the acoustic and Maxwell’s equation,” SIAM J. Appl. Math. 50, 1325–1340 (1990). [CrossRef]
- J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction free beam,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
- F. Gori, G. Guattari, C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987). [CrossRef]
- J.-Y. Lu, J. F. Greenleaf, “Nondiffracting X waves—exact solutions to free space scalar wave equations and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19–31 (1992). [CrossRef]
- M. A. Porras, R. Borghi, M. Santarsiero, “Few-optical-cycles Bessel–Gauss pulsed beams in free space,” Phys. Rev. E 62, 5729–5737 (2000). [CrossRef]
- E. Heyman, L. B. Felsen, “Propagating pulsed beam solution by complex source parameter substitution,” IEEE Trans. Antennas Propag. 34, 1062–1065 (1986). [CrossRef]
- E. Heyman, B. Z. Steinberg, “A spectral analysis of complex-source pulsed beams,” J. Opt. Soc. Am. A 4, 473–480 (1987). [CrossRef]
- E. Heyman, L. B. Felsen, “Complex-source pulsed-beam fields,” J. Opt. Soc. Am. A 6, 806–817 (1989). [CrossRef]
- E. Heyman, B. Z. Steinberg, R. Ianconescu, “Electromagnetic complex source pulsed beam fields,” IEEE Trans. Antennas Propag. 38, 957–963 (1990). [CrossRef]
- E. Heyman, T. Melamed, “Certain considerations in aperture synthesis for ultrawideband/short-pulsed fields,” IEEE Trans. Antennas Propag. 42, 518–525 (1994). [CrossRef]
- E. Heyman, “Pulsed beam propagation in an inhomogeneous medium,” IEEE Trans. Antennas Propag. 42, 311–319 (1994). [CrossRef]
- S. Feng, H. G. Winful, “Spatiotemporal transformations of isodiffracting ultrashort pulses by nondispersive quadratic phase media,” J. Opt. Soc. Am. A 16, 2500–2509 (1999). [CrossRef]
- E. Heyman, R. Strachielevitz, D. Koslof, “Pulsed beam reflection and transmission at a planar interface: exact solutions and approximate local models,” Wave Motion 18, 315–343 (1993). [CrossRef]
- R. Ianconescu, E. Heyman, “Pulsed beam diffraction by a perfectly conducting wedge. Part I: exact solution,” IEEE Trans. Antennas Propag. 42, 1377–1385 (1994). [CrossRef]
- E. Heyman, R. Ianconescu, “Pulsed beam diffraction by a perfectly conducting wedge. Part II: local scattering models,” IEEE Trans. Antennas Propag. 43, 519–528 (1995). [CrossRef]
- E. Heyman, L. B. Felsen, “Weakly dispersive spectral theory of transients (STT). Part I: formulation and interpretation,” IEEE Trans. Antennas Propag. 35, 80–86 (1987). [CrossRef]
- E. Heyman, L. B. Felsen, “Weakly dispersive spectral theory of transients (STT). Part II: evaluation of the spectral integral,” IEEE Trans. Antennas Propag. 35, 574–580 (1987). [CrossRef]
- E. Heyman, “Weakly dispersive spectral theory of transients (STT). Part III: applications,” IEEE Trans. Antennas Propag. 35, 1258–1266 (1987). [CrossRef]
- E. Heyman, L. B. Felsen, “Real and complex spectra—an alternative view of WKBJ seismograms,” Geophys. J. R. Astron. Soc. 91, 1087–1126 (1987). [CrossRef]
- E. Heyman, A. G. Tijhuis, J. Boersma, “Spherical and collimated pulsed fields in conducting media,” in Proceedings of the Union Radio-Scientifique Internationale Trianum International Symposium on Electromagnetic Theory (Union Radio-Scientifique Internationale, Gent, Belgium, 1995), pp. 643–645.
- T. Melamed, L. B. Felsen, “Pulsed beam propagation in lossless dispersive media. I. Theory,” J. Opt. Soc. Am. A 15, 1268–1276 (1998). [CrossRef]
- T. Melamed, L. B. Felsen, “Pulsed beam propagation in lossless dispersive media. II. A numerical example,” J. Opt. Soc. Am. A 15, 1277–1284 (1998). [CrossRef]
- K. Oughstun, “The angular spectrum representation and the Sherman expansion of pulsed EM fields in dispersive attenuative media,” Pure Appl. Opt. 7, 1059–1078 (1998). [CrossRef]
- J. Oz, E. Heyman, “Modal theory for the two-frequency mutual coherence function in random media. Beam waves,” Waves Random Media 8, 159–174 (1998). [CrossRef]
- J. Gozani, “Pulsed beam propagation through random media,” Opt. Lett. 21, 1712–1714 (1996). [CrossRef] [PubMed]
- S. Zeroug, F. E. Stanke, R. Burridge, “A complex-transducer-point model for finite emitting and receiving ultrasonic transducers,” Wave Motion 24, 21–40 (1996). [CrossRef]
- M. A. Porras, “Ultrashort pulsed Gaussian light beams,” Phys. Rev. E 58, 1086–1093 (1998). [CrossRef]
- M. A. Porras, “Nonsinusoidal few-cycle pulsed light beams in free space,” J. Opt. Soc. Am. B 16, 1468–1474 (1999). [CrossRef]
- E. Heyman, “Complex source pulsed beam expansion of transient radiation,” Wave Motion 11, 337–349 (1989). [CrossRef]
- T. B. Hansen, A. N. Norris, “Exact complex source representations of transient radiation,” Wave Motion 26, 101–115 (1997). [CrossRef]
- B. Z. Steinberg, E. Heyman, L. B. Felsen, “Phase-space beam summation for time-dependent radiation from large apertures: continuous parameterization,” J. Opt. Soc. Am. A 8, 943–958 (1991). [CrossRef]
- B. Z. Steinberg, E. Heyman, “Phase-space beam summation for time-dependent radiation from large apertures: discretized parameterization,” J. Opt. Soc. Am. A 8, 959–966 (1991). [CrossRef]
- B. Z. Steinberg, E. Heyman, “The local Radon transform and variable scale resolution with application to time-dependent radiation,” SIAM J. Appl. Math 53, 381–400 (1993). [CrossRef]
- T. Melamed, “Phase space beam summation: a local spectrum analysis of time dependent radiation,” J. Electromagn. Waves Appl. 11, 739–773 (1997). [CrossRef]
- E. Heyman, T. Melamed, “Space–time representation of ultra-wideband signals,” in Advances in Imaging and Electron Physics, P. W. Hawkes, ed. (Academic, New York, 1998), pp. 1–66, 103.
- E. Heyman, “Transient plane wave spectrum representation for radiation from volume source distribution,” J. Math. Phys. 37, 658–681 (1996). [CrossRef]
- T. B. Hansen, A. D. Yaghjian, “Planar near field scanning in the time domain. Part I: formulation,” IEEE Trans. Antennas Propag. 42, 1280–1291 (1994). [CrossRef]
- T. B. Hansen, A. D. Yaghjian, “Planar near field scanning in the time domain. Part II: sampling theorem and computation schemes,” IEEE Trans. Antennas Propag. 42, 1292–1300 (1994). [CrossRef]
- T. B. Hansen, A. D. Yaghjian, Plane-Wave Theory of Time-Domain Fields: Near-Field Scanning Applications, IEEE Press Series on Electromagnetic Wave Theory (Institute of Electrical and Electronics Engineers, New York, 1999).
- A. A. Ergin, B. Shanker, E. Michielssen, “Fast evaluation of three-dimensional transient wave fields using diagonal translation operators,” J. Comput. Phys. 146, 157–180 (1998). [CrossRef]
- A. A. Ergin, B. Shanker, E. Michielssen, “The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena,” IEEE Trans Antennas Propag. 41, 39–52 (1999). [CrossRef]
- T. Melamed, E. Heyman, “Spectral analysis of time-domain diffraction tomography,” Radio Sci. 32, 593–604 (1997). [CrossRef]
- T. Melamed, E. Heyman, L. B. Felsen, “Local spectral analysis of short-pulse-excited scattering from weakly inhomogeneous media. Part I: forward scattering,” IEEE Trans. Antennas Propag. 47, 1208–1217 (1999). [CrossRef]
- T. Melamed, E. Heyman, L. B. Felsen, “Local spectral analysis of short-pulse-excited scattering from weakly inhomogeneous media. Part II: inverse scattering,” IEEE Trans. Antennas Propag. 47, 1218–1227 (1999). [CrossRef]
- G. A. Deschamps, “Ray techniques in electromagnetics,” Proc. IEEE 60, 1022–1035 (1972). [CrossRef]
- J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
- L. B. Felsen, N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, Englewood Cliffs, N.J., 1973); for a new printing see the IEEE Press Series on Electromagnetic Waves (Institute of Electrical and Electronics Engineers, New York, 1994).
- C. J. Thompson, C. H. Chapman, “An introduction to Maslov’s asymptotic method,” Geophys. J. R. Astron. Soc. 83, 143–168 (1985). [CrossRef]
- R. W. Ziolkowski, G. A. Deschamps, “The asymptotic evaluation of high-frequency fields near a caustic: an introduction to Maslov’s method,” Radio Sci. 19, 1001–1025 (1984). [CrossRef]
- J. M. Arnold, “Spectral synthesis of uniform wave functions,” Wave Motion 8, 135–150 (1986). [CrossRef]
- Yu. A. Kravtsov, “Two new asymptotic techniques for the theory of wave propagation in inhomogeneous media,” Sov. Phys. Acoust. 14, 1–17 (1968).
- M. J. Bastiaans, “Signal descriptions by means of a local frequency spectrum,” in Transformation in Optical Signal Processing, W. T. Rhodes, ed., Proc. SPIE373, 49–62 (1981). [CrossRef]
- V. Galdi, D. Castañon, L. B. Felsen, “Quasi-ray Gaussian beam algorithms for time-harmonic two-dimensional scattering by moderately rough interfaces,” IEEE Trans. Antennas Propag. (to be published).
- V. Galdi, D. Castañon, L. B. Felsen are preparing a paper titled “Reconstruction of moderately rough interfaces via quasi-ray Gaussian beams” for publication.

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.