OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 7 — Jul. 1, 2001
  • pp: 1612–1617

Polarization basis for vortex beams

Franco Gori  »View Author Affiliations

JOSA A, Vol. 18, Issue 7, pp. 1612-1617 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Attention is called to a polarization basis formed by four Jones vectors that is reducible to two basic structures. In these states the field is linearly polarized at any point, but the polarization direction changes with the angular coordinate. Very simple equations hold for the field lines of these basis vectors. The adoption of this basis is of interest for beams possessing a single vortex of any order, say, m, as well as for beams with two vortices of opposite charges, m and -m. As an example, the application to vectorial Bessel–Gauss beams is briefly discussed.

© 2001 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(350.5500) Other areas of optics : Propagation

Original Manuscript: September 6, 2000
Revised Manuscript: January 31, 2001
Manuscript Accepted: January 31, 2001
Published: July 1, 2001

Franco Gori, "Polarization basis for vortex beams," J. Opt. Soc. Am. A 18, 1612-1617 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Simon, E. C. G. Sudarshan, N. Mukunda, “Gaussian–Maxwell beams,” J. Opt. Soc. Am. A 3, 536–540 (1983). [CrossRef]
  2. R. H. Jordan, G. D. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss beam solution,” Opt. Lett. 19, 427–429 (1994). [CrossRef] [PubMed]
  3. A. A. Tovar, G. H. Clark, “Concentric-circle-grating, surface-emitting laser beam propagation in complex optical systems,” J. Opt. Soc. Am. A 14, 3333–3340 (1997). [CrossRef]
  4. S. R. Seshadri, “Electromagnetic Gaussian beam,” J. Opt. Soc. Am. A 15, 2712–2719 (1998). [CrossRef]
  5. P. L. Greene, D. G. Hall, “Properties and diffraction of vector Bessel–Gauss beams,” J. Opt. Soc. Am. A 15, 3020–3027 (1998). [CrossRef]
  6. C. J. R. Sheppard, “Polarization of almost-plane waves,” J. Opt. Soc. Am. A 17, 335–341 (2000). [CrossRef]
  7. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995).
  8. D. F. V. James, “Change of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. A 11, 1641–1643 (1994). [CrossRef]
  9. F. Gori, “Matrix treatment for partially polarized, partially coherent beams,” Opt. Lett. 23, 241–243 (1998). [CrossRef]
  10. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, G. Guattari, “Beam coherence–polarization matrix,” Pure Appl. Opt. 7, 941–951 (1998). [CrossRef]
  11. G. Piquero, J. M. Movilla, P. M. Mejı́as, R. Martı́nez-Herrero, “Beam quality of partially polarized beams propagating through lens-like birefringent elements,” J. Opt. Soc. Am. A 16, 2666–2668 (1999). [CrossRef]
  12. S. R. Seshadri, “Partially coherent Gaussian Schell-model electromagnetic beams,” J. Opt. Soc. Am. A 16, 1373–1380 (1999). [CrossRef]
  13. M. Berry, “Singularities in waves and rays,” in Physics of Defects, R. Balian, M. Kléman, J.-P. Poirer, eds. (North-Holland, Amsterdam, 1981), p. 454.
  14. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73–80 (1993). [CrossRef]
  15. I. Freund, “Optical vortex trajectories,” Opt. Commun. 181, 19–33 (2000). [CrossRef]
  16. F. Vivanco, F. Melo, “Surface spiral waves in a filamentary vortex,” Phys. Rev. Lett. 85, 2116–2119 (2000). [CrossRef] [PubMed]
  17. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  18. J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  19. E. Abramochkin, V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83, 123–135 (1991). [CrossRef]
  20. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  21. S. C. Tidwell, D. H. Ford, W. D. Kimura, “Generatingradially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990). [CrossRef] [PubMed]
  22. S. C. Tidwell, G. H. Kim, W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32, 5222–5229 (1993). [CrossRef] [PubMed]
  23. A. A. Tovar, “Production and propagation of cylindrically polarized Laguerre–Gaussian beams,” J. Opt. Soc. Am. A 15, 2705–2711 (1998). [CrossRef]
  24. R. Oron, N. Davidson, A. A. Friesem, E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000). [CrossRef]
  25. J. Turunen, A. Vasara, A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988). [CrossRef] [PubMed]
  26. R. M. Herman, T. A. Wiggins, “Bessel-like beams modulated by arbitrary radial functions,” J. Opt. Soc. Am. A 17, 1021–1032 (2000). [CrossRef]
  27. I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, New York, 1980).
  28. T. Takenaka, M. Yokota, O. Fukumitsu, “Propagation of light beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 2, 826–829 (1985). [CrossRef]
  29. C. Brosseau, Fundamentals of Polarized Light (Wiley, New York, 1998).
  30. J. D. Lawrence, A Catalog of Special Plane Curves (Dover, New York, 1972).
  31. Jacques Bernoulli was so fond of this curve that, in accord with his desire, a spiral was engraved on his tombstone.
  32. C. J. R. Sheppard, T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” Microwaves Opt. Acoust. 2, 105–112 (1978). [CrossRef]
  33. F. Gori, G. Guattari, C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987). [CrossRef]
  34. R. H. Jordan, D. G. Hall, O. King, G. Wicks, S. Rishton, “Lasing behavior of circular grating surface-emitting semiconductor lasers,” J. Opt. Soc. Am. B 14, 449–453 (1997). [CrossRef]
  35. C. Olson, P. L. Greene, G. W. Wicks, D. G. Hall, “High-order azimuthal spatial modes of concentric-circle-grating surface-emitting semiconductor lasers,” Appl. Phys. Lett. 72, 1284–1268 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited