OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 7 — Jul. 1, 2001
  • pp: 1618–1626

Nonparaxial Bessel-Gauss beams

Riccardo Borghi, Massimo Santarsiero, and Miguel A. Porras  »View Author Affiliations


JOSA A, Vol. 18, Issue 7, pp. 1618-1626 (2001)
http://dx.doi.org/10.1364/JOSAA.18.001618


View Full Text Article

Acrobat PDF (414 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the nonparaxial propagation of Bessel–Gauss beams of any order. Closed-form expressions of all corrections to be added to the solution that is pertinent to the corresponding paraxial problem are found. Such corrections are expressed in terms of two families of polynomials, defined through recurrence rules, that encompass the Laguerre–Gauss polynomials for the particular case of a fundamental Gaussian beam. Numerical examples are shown.

© 2001 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(260.1960) Physical optics : Diffraction theory
(350.5500) Other areas of optics : Propagation

Citation
Riccardo Borghi, Massimo Santarsiero, and Miguel A. Porras, "Nonparaxial Bessel-Gauss beams," J. Opt. Soc. Am. A 18, 1618-1626 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-7-1618


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Vahimaa, V. Kettunen, M. Kuittinen, J. Turunen, and A. T. Friberg, “Electromagnetic analysis of nonparaxial Bessel beams generated by diffractive axicons,” J. Opt. Soc. Am. A 14, 1817–1824 (1997).
  2. J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Nondiffracting beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
  3. Z. Bouchal and M. Olivík, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42, 1555–1566 (1995).
  4. M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1972).
  5. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
  6. G. P. Agrawal and D. N. Pattanayak, “Gaussian beam propagation beyond the paraxial approximation,” J. Opt. Soc. Am. 69, 575–578 (1979).
  7. M. Couture and P. A. Belanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A 24, 355–359 (1981).
  8. G. P. Agrawal and M. Lax, “Free-space propagation beyond the paraxial approximation,” Phys. Rev. A 27, 1693–1695 (1983).
  9. T. Takenaka, M. Yokota, and O. Fukumitsu, “Propagation for light beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 2, 826–829 (1985).
  10. S. Nemoto, “Nonparaxial Gaussian beams,” Appl. Opt. 29, 1940–1946 (1990).
  11. Q. Cao and X. Deng, “Corrections to the paraxial approximation of an arbitrary free-propagation beam,” J. Opt. Soc. Am. A 15, 1144–1148 (1998).
  12. H. Laabs, “Propagation of Hermite–Gaussian beams beyond the paraxial approximation,” Opt. Commun. 147, 1–4 (1998).
  13. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  14. H. Laabs and A. T. Friberg, “Nonparaxial eigenmodes of stable resonators,” IEEE J. Quantum Electron. 35, 198–207 (1999).
  15. A. Wünsche, “Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beams,” J. Opt. Soc. Am. A 9, 765–774 (1992).
  16. G. W. Forbes, “Validity of the Fresnel approximation in the diffraction of collimated beams,” J. Opt. Soc. Am. A 13, 1816–1826 (1996).
  17. G. W. Forbes, D. J. Butler, R. L. Gordon, and A. A. Asatryan, “Algebraic corrections for paraxial wave fields,” J. Opt. Soc. Am. A 14, 3300–3315 (1997).
  18. M. A. Alonso, A. A. Asatryan, and G. W. Forbes, “Beyond the Fresnel approximation for focused waves,” J. Opt. Soc. Am. A 16, 1958–1969 (1999).
  19. A. T. Friberg, T. Jakkola, and J. Tuovinen, “Electromagnetic Gaussian beam beyond the paraxial regime,” IEEE Trans. Antennas Propag. 40, 984–989 (1992).
  20. S. Chi and Q. Guo, “Vector theory of self-focusing of an optical beam in Kerr media,” Opt. Lett. 20, 1598–1600 (1995).
  21. A. Ciattoni, B. Crosignani, and P. Di Porto, “Vectorial free-space optical propagation: a simple approach for generating all-order nonparaxial corrections,” Opt. Commun. 177, 9–13 (2000).
  22. A. Ciattoni, P. Di Porto, B. Crosignani, and A. Yariv, “Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation,” J. Opt. Soc. Am. B 17, 809–819 (2000).
  23. C. J. R. Sheppard and S. Saghafi, “Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation,” Opt. Lett. 24, 1543–1545 (1999).
  24. C. J. R. Sheppard, and S. Saghafi, “Electromagnetic Gaussian beam modes beyond the paraxial approximation,” J. Opt. Soc. Am. A 16, 1381–1386 (1999).
  25. D. Yerick and M. Glasner, “Forward wide-angle light propagation in semiconductor and rib waveguides,” Opt. Lett. 15, 174–176 (1990).
  26. C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” Microwaves Opt. Acoust. 2, 105–112 (1978).
  27. F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987).
  28. V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. Schirripa Spagnolo, “Generalized Bessel–Gauss beams,” J. Mod. Opt. 43, 1155–1166 (1996).
  29. M. Santarsiero, “Propagation of generalized Bessel–Gauss beams through ABCD optical systems,” Opt. Commun. 132, 1–7 (1996).
  30. R. Borghi and M. Santarsiero, “M2 factor of Bessel–Gauss beams,” Opt. Lett. 22, 262–264 (1997).
  31. F. Gori, G. Guattari, and C. Padovani, “Modal expansion for J0-correlated Schell-model sources,” Opt. Commun. 64, 311–316 (1987).
  32. C. Palma, R. Borghi, and G. Cincotti, “Beams originated by J0-correlated Schell-model planar sources,” Opt. Commun. 125, 113–121 (1996).
  33. R. Borghi, “Superposition scheme for J0-correlated partially coherent sources,” IEEE J. Quantum Electron. 35, 849–856 (1999).
  34. S. R. Seshadri, “Average characteristics of a partially coherent Bessel–Gauss optical beam,” J. Opt. Soc. Am. A 16, 2917–2927 (1999).
  35. A. V. Shchegrov and E. Wolf, “Partially coherent conical beams,” Opt. Lett. 25, 141–143 (2000).
  36. R. H. Jordan and D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss solution,” Opt. Lett. 19, 427–429 (1994).
  37. D. G. Hall, “Vector-beam solution of Maxwell’s wave equation,” Opt. Lett. 21, 9–12 (1996).
  38. C. Olson, P. L. Greene, G. W. Wicks, D. G. Hall, and S. Rishton, “High-order azimuthal spatial modes of concentric-circle-grating surface-emitting semiconductor lasers,” Appl. Phys. Lett. 72, 1284–1286 (1998).
  39. P. L. Greene and D. G. Hall, “Properties and diffraction of vector Bessel–Gauss beams,” J. Opt. Soc. Am. A 15, 3020–3027 (1998).
  40. P. Pääkkönen and J. Turunen, “Resonators with Bessel–Gauss modes,” Opt. Commun. 156, 359–366 (1998).
  41. C. F. R. Caron and R. M. Potvliege, “Phase matching and harmonic generation in Bessel–Gauss beams,” J. Opt. Soc. Am. B 15, 1096–1106 (1998).
  42. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Efficiency of second-harmonic generation with Bessel beams,” Phys. Rev. A 60, 2438–2441 (1999).
  43. C. Altucci, R. Bruzzese, D. D’Antuoni, C. de Lisio, and S. Solimeno, “Harmonic generation in gases by use of Bessel–Gauss laser beams,” J. Opt. Soc. Am. B 17, 34–42 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited