OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 7 — Jul. 1, 2001
  • pp: 1650–1655

Shape-invariance properties of a quartic-aberrated TEM00 Gaussian beam

Massimo Santarsiero  »View Author Affiliations

JOSA A, Vol. 18, Issue 7, pp. 1650-1655 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The concepts of shape-invariance error (SIE) and shape-invariance range (SIR) have recently been introduced to specify in a quantitative way the shape changes suffered by a beam on propagation. Here such parameters are evaluated for the case of a fundamental Gaussian beam in the presence of a quartic aberration of its wave front. Numerical results are presented for the case of a collimated aberrated beam. Generalization to the case of noncollimated beams is also given.

© 2001 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(140.3300) Lasers and laser optics : Laser beam shaping
(220.1010) Optical design and fabrication : Aberrations (global)
(350.4800) Other areas of optics : Optical standards and testing
(350.5500) Other areas of optics : Propagation

Original Manuscript: September 25, 2000
Revised Manuscript: January 16, 2001
Manuscript Accepted: January 16, 2001
Published: July 1, 2001

Massimo Santarsiero, "Shape-invariance properties of a quartic-aberrated TEM00 Gaussian beam," J. Opt. Soc. Am. A 18, 1650-1655 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Gori, S. Vicalvi, M. Santarsiero, R. Borghi, “Shape invariance range of a light beam,” Opt. Lett. 21, 1205–1207 (1996). [CrossRef] [PubMed]
  2. S. Vicalvi, R. Borghi, M. Santarsiero, F. Gori, “Shape-invariance error for axially symmetric light beams,” IEEE J. Quantum Electron. 34, 2109–2116 (1998). [CrossRef]
  3. P.-A. Bélanger“Beam propagation and the ABCD matrices,” Opt. Lett. 16, 196–198 (1991). [CrossRef]
  4. A. E. Siegman, “Defining the effective radius of curvature for a nonideal optical beam,” IEEE J. Quantum Electron. 27, 1146–1148 (1991). [CrossRef]
  5. W. T. Welford, Aberration of the Symmetric Optical System (Academic, New York, 1974).
  6. V. N. Mahajan, Aberration Theory Made Simple, Vol. TT06 of SPIE Tutorial Text Series (SPIE, Bellingham, Wash., 1991).
  7. C. A. Klein, “Optical distortion coefficients of high-power laser windows,” Opt. Eng. 20, 343–360 (1990). [CrossRef]
  8. A. E. Siegman, “Analysis of laser beam quality degradation caused by quartic phase distortion,” Appl. Opt. 32, 5893–5901 (1993). [CrossRef] [PubMed]
  9. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990). [CrossRef]
  10. R. Martı́nez-Herrero, P. M. Mejı́as, G. Piquero, “Quality improvement of partially coherent symmetric-intensity beams caused by quartic phase distortion,” Opt. Lett. 17, 1650–1652 (1992). [CrossRef]
  11. G. Piquero, P. M. Mejı́as, R. Martı́nez-Herrero, “Sharpness changes of Gaussian beams induced by spherically aberrated lenses,” Opt. Commun. 107, 179–183 (1994). [CrossRef]
  12. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 17.
  13. M. Abramowitz, I. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1972), Chap. 22.
  14. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Chap. 5.
  15. F. Gori, “Why is the Fresnel transform so little known?” in Current Trends in Optics, L. C. Dainty, ed. (Academic, London, 1994), Chap. 10.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited