OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 7 — Jul. 1, 2001
  • pp: 1704–1713

Asymptotic description of pulsed ultrawideband electromagnetic beam field propagation in dispersive, attenuative media

Kurt Edmund Oughstun  »View Author Affiliations


JOSA A, Vol. 18, Issue 7, pp. 1704-1713 (2001)
http://dx.doi.org/10.1364/JOSAA.18.001704


View Full Text Article

Enhanced HTML    Acrobat PDF (227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The asymptotic description of the coupled spatial and temporal evolution of a pulsed ultrawideband electromagnetic beam field as it propagates through a dispersive, attenuative material that occupies the half-space zz0 is obtained from the angular spectrum of plane waves representation. This angular-spectrum representation expresses the wave field as a superposition of both homogeneous and inhomogeneous plane waves. The paraxial approximation of the spatial part of this representation for nontruncated beam fields results in a description that explicitly displays the temporal evolution of the pulsed-beam field through a single-contour integral that is of the same form as that obtained for a pulsed plane-wave field propagating in the positive z direction in a lossy, dispersive medium. The accuracy of this paraxial approximation is shown to improve as the material’s attenuation increases.

© 2001 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(260.2030) Physical optics : Dispersion
(260.2110) Physical optics : Electromagnetic optics
(320.5550) Ultrafast optics : Pulses

History
Original Manuscript: November 1, 2000
Revised Manuscript: January 5, 2001
Manuscript Accepted: January 5, 2001
Published: July 1, 2001

Citation
Kurt Edmund Oughstun, "Asymptotic description of pulsed ultrawideband electromagnetic beam field propagation in dispersive, attenuative media," J. Opt. Soc. Am. A 18, 1704-1713 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-7-1704


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. E. Oughstun, G. C. Sherman, Electromagnetic Pulse Propagation in Causal Dielectrics (Springer-Verlag, Berlin, 1994).
  2. W. H. Carter, “Electromagnetic beam fields,” Opt. Acta 21, 871–892 (1974). [CrossRef]
  3. G. C. Sherman, “Diffracted wave fields expressible by plane-wave expansions containing only homogeneous waves,” Phys. Rev. Lett. 21, 761–764 (1968). [CrossRef]
  4. G. C. Sherman, “Diffracted wave fields expressible by plane-wave expansions containing only homogeneous waves,” J. Opt. Soc. Am. 59, 697–711 (1969). [CrossRef]
  5. K. E. Oughstun, “The angular spectrum representation and the Sherman expansion of pulsed electromagnetic beam fields in dispersive, attenuative media,” Pure Appl. Opt. 7, 1059–1078 (1998). [CrossRef]
  6. J. J. Stamnes, Waves in Focal Regions (Hilger, London, 1987), Sec. 15.2.
  7. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), Sec. 5.18.
  8. Both cgs and mks units are employed in this paper through the use of a conversion factor that appears in the double brackets ‖⋯‖ in each affected equation. If this factor is included in the equation it is then in cgs units, provided that∊0=μ0=1,whereas if this factor is omitted the equation is in mks units. If no such factor appears the equation is correct in both systems of units.
  9. H. M. Nussenzveig, Causality and Dispersion Relations (Academic, New York, 1972), Chap. 1.
  10. T. Melamed, L. B. Felsen, “Pulsed-beam propagation in lossless dispersive media. I. Theory,” J. Opt. Soc. Am. A 15, 1268–1276 (1998). [CrossRef]
  11. T. Melamed, L. B. Felsen, “Pulsed-beam propagation in lossless dispersive media. II. A numerical example,” J. Opt. Soc. Am. A 15, 1277–1284 (1998). [CrossRef]
  12. J. E. K. Laurens, K. E. Oughstun, “Electromagnetic impulse response of triply-distilled water,” in Ultra-Wideband, Short-Pulse Electromagnetics 4. E. Heyman, B. Mandelbaum, J. Shiloh, eds. (Plenum, New York, 1999), pp. 243–264.
  13. P. D. Smith, K. E. Oughstun, “Ultrawideband electromagnetic pulse propagation in triply-distilled water,” in Ultra-Wideband, Short-Pulse Electromagnetics 4, E. Heyman, B. Mandelbaum, J. Shiloh, eds. (Plenum, New York, 1999), pp. 265–276.
  14. J. McConnell, Rotational Brownian Motion and Dielectric Theory (Academic, London, 1980).
  15. P. Debye, Polar Molecules (Dover, New York, 1929).
  16. E. T. Copson, Asymptotic Expansions (Cambridge U. Press, Cambridge, 1971), Chap. 2.
  17. M. Born, E. Wolf, Principles of Optics, 7th ed., expanded (Cambridge U. Press, Cambridge, 1999), Chap. 8.
  18. K. E. Oughstun, “Dynamical structure of the precursor fields in linear dispersive pulse propagation in lossy dielectrics,” in Ultra-Wideband, Short-Pulse Electromagnetics 2, L. Carin, L. B. Felsen, eds. (Plenum, New York, 1995), pp. 257–272.
  19. K. E. Oughstun, G. C. Sherman, “Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium),” J. Opt. Soc. Am. B 5, 817–849 (1988). [CrossRef]
  20. K. E. Oughstun, G. C. Sherman, “Uniform asymptotic description of electromagnetic pulse propagation in a linear dispersive medium with absorption (the Lorentz medium),” J. Opt. Soc. Am. A 6, 1394–1420 (1989). [CrossRef]
  21. S. Shen, K. E. Oughstun, “Dispersive pulse propagation in a double-resonance Lorentz medium,” J. Opt. Soc. Am. B 6, 948–963 (1989). [CrossRef]
  22. J. A. Solhaug, K. E. Oughstun, J. J. Stamnes, P. D. Smith, “Uniform asymptotic description of the Brillouin precursor in a Lorentz model dielectric,” Pure Appl. Opt. 7, 575–601 (1998). [CrossRef]
  23. K. E. Oughstun, G. C. Sherman, “Uniform asymptotic description of ultrashort rectangular optical pulse propagation in a linear, causally dispersive medium,” Phys. Rev. A 41, 6090–6113 (1990). [CrossRef] [PubMed]
  24. G. C. Sherman, K. E. Oughstun, “Description of pulse dynamics in Lorentz media in terms of the energy velocity and attenuation of time-harmonic waves,” Phys. Rev. Lett. 47, 1451–1454 (1981). [CrossRef]
  25. C. M. Balictsis, K. E. Oughstun, “Uniform asymptotic description of ultrashort Gaussian pulse propagation in a causal, dispersive dielectric,” Phys. Rev. E 47, 3645–3669 (1993). [CrossRef]
  26. K. E. Oughstun, C. M. Balictsis, “Gaussian pulse propagation in a dispersive, absorbing dielectric,” Phys. Rev. Lett. 77, 2210–2213 (1996). [CrossRef] [PubMed]
  27. C. M. Balictsis, K. E. Oughstun, “Generalized asymptotic description of the propagated field dynamics in Gaussian pulse propagation in a linear, causally dispersive medium,” Phys. Rev. E 51, 1910–1921 (1997). [CrossRef]
  28. K. E. Oughstun, H. Xiao, “Failure of the quasimonochromatic approximation for ultrashort pulse propagation in a dispersive, attenuative medium,” Phys. Rev. Lett. 78, 642–645 (1997). [CrossRef]
  29. H. Xiao, K. E. Oughstun, “Failure of the group velocity description for ultrawideband pulse propagation in a double-resonance Lorentz model dielectric,” J. Opt. Soc. Am. B 16, 1773–1785 (1999). [CrossRef]
  30. J. A. Solhaug, J. J. Stamnes, K. E. Oughstun, “Diffraction of electromagnetic pulses in a single-resonance Lorentz medium,” Pure Appl. Opt. 7, 1079–1101 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited