Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Self-focusing and frequency broadening of an intense short-pulse laser in plasmas

Not Accessible

Your library or personal account may give you access

Abstract

An intense ultrafast laser pulse propagating through a plasma undergoes self-focusing and self-phase-modulation as a result of relativistic mass nonlinearity. The inclusion of a quartic (r4) term in the expansion of the eikonal in the radial coordinate r allows the modification of the shape of the radial intensity profile. The front of the pulse, under the combined effects of time-dependent self-focusing and frequency downshifting, acquires a severely distorted temporal shape. The radial profile for Iλμ2<2.8×1018 W/cm2, where I is the axial laser intensity and λμ is the laser wavelength in micrometers, is transformed from a Gaussian to a super-Gaussian because of the faster convergence of the marginal rays than the paraxial rays. In the opposite case of Iλμ2>2.8×1018W/cm2 when nonlinear plasma permittivity approaches saturation, the radial profile in the axial region becomes broader than the Gaussian.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Plasma density ramp for relativistic self-focusing of an intense laser: comment

Rasoul Sadighi-Bonabi, Elnaz Yazdani, Mahdi Habibi, and Erik Lotfi
J. Opt. Soc. Am. B 27(9) 1731-1734 (2010)

Plasma density ramp for relativistic self-focusing of an intense laser

Devki N. Gupta, Min S. Hur, Ilmoon Hwang, Hyyong Suk, and Ashok K. Sharma
J. Opt. Soc. Am. B 24(5) 1155-1159 (2007)

Large-amplitude plasma wave generation with a high-intensity short-pulse beat wave

B. Walton, Z. Najmudin, M. S. Wei, C. Marle, R. J. Kingham, K. Krushelnick, A. E. Dangor, R. J. Clarke, M. J. Poulter, C. Hernandez-Gomez, S. Hawkes, D. Neely, J. L. Collier, C. N. Danson, S. Fritzler, and V. Malka
Opt. Lett. 27(24) 2203-2205 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved