OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 7 — Jul. 1, 2001
  • pp: 1719–1725

Role of the instantaneous spectrum on pulse propagation in causal linear dielectrics

Justin Peatross, Michael Ware, and Scott A. Glasgow  »View Author Affiliations

JOSA A, Vol. 18, Issue 7, pp. 1719-1725 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (157 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A model-independent theorem demonstrates how a causal linear dielectric medium responds to the instantaneous spectrum, that is, the spectrum of the electric field pulse that is truncated at each new instant (as a given locale in the medium experiences the pulse). This process leads the medium to exchange energy with the front of a pulse differently than with the back as the instantaneous spectrum laps onto or off of nearby resonances. So-called superluminal pulse propagation in either absorbing or amplifying media as well as highly subluminal pulse propagation are understood qualitatively and quantitatively within this context.

© 2001 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.2160) Physical optics : Energy transfer
(350.5500) Other areas of optics : Propagation

Original Manuscript: November 13, 2001
Revised Manuscript: January 23, 2001
Manuscript Accepted: January 23, 2001
Published: July 1, 2001

Justin Peatross, Michael Ware, and Scott A. Glasgow, "Role of the instantaneous spectrum on pulse propagation in causal linear dielectrics," J. Opt. Soc. Am. A 18, 1719-1725 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Y. Chiao, “Superluminal (but causal) propagation of wave packets in transparent media with inverted atomic populations,” Phys. Rev. A 48, R34–R37 (1993). [CrossRef] [PubMed]
  2. E. L. Bolda, J. C. Garrison, R. Y. Chiao, “Optical pulse propagation at negative group velocities due to a nearby gain line,” Phys. Rev. A 49, 2938–2947 (1994). [CrossRef] [PubMed]
  3. R. Y. Chiao, A. M. Steinberg, “Tunneling times and superluminality,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1997), Vol. 37, pp. 347–406.
  4. L. J. Wang, A. Kuzmmich, A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000). [CrossRef] [PubMed]
  5. C. G. B. Garrett, D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305–313 (1970). [CrossRef]
  6. S. Chu, S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982). [CrossRef]
  7. L. V. Hau, S. E. Haris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  8. C. H. Page, “Instantaneous power spectra,” J. Appl. Phys. 23, 103–106 (1952). [CrossRef]
  9. M. B. Priestley, “Power spectral analysis of nonstationary random processes,” J. Sound Vib. 6, 86–97 (1967). [CrossRef]
  10. J. H. Eberly, K. Wodkiewicz, “The time-dependent physical spectrum of light,” J. Opt. Soc. Am. 67, 1252–1260 (1977). [CrossRef]
  11. The authors are preparing the following paper for publication: “Poynting’s theorem and luminal energy transport in causal dielectrics.”
  12. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998), pp. 323, 325, 334.
  13. L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960).
  14. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), pp. 667–670.
  15. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A 3, 233–245 (1970). [CrossRef]
  16. G. C. Sherman, K. E. Oughstun, “Energy-velocity description of pulse propagation in absorbing, dispersive dielectrics,” J. Opt. Soc. Am. B 12, 229–247 (1995). [CrossRef]
  17. K. E. Oughstun, C. M. Balictsis, “Gaussian pulse propagation in a dispersive, absorbing dielectric,” Phys. Rev. Lett. 77, 2210–2213 (1996). [CrossRef] [PubMed]
  18. G. C. Sherman, K. E. Oughstun, “Description of pulse dynamics in Lorentz media in terms of the energy velocity and attenuation of time-harmonic waves,” Phys. Rev. Lett. 47, 1451–1454 (1981). [CrossRef]
  19. J. Peatross, S. A. Glasgow, M. Ware, “Average energy flow of optical pulses in dispersive media,” Phys. Rev. Lett. 84, 2370–2373 (2000). [CrossRef] [PubMed]
  20. G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists, 4th ed. (Academic, San Diego, Calif., 1995), pp. 425–426.
  21. L. D. Landau, E. M. Lifshitz, L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, Oxford, UK, 1982), p. 274.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited