OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 7 — Jul. 1, 2001
  • pp: 1741–1747

Photorefractive beam-fanning effect and self-pulsations in coated LiNbO3 slabs

Georgy Zartov, Tihomir Tenev, Krassimir Panajotov, Evgeny Popov, Rumiana Peyeva, Hugo Thienpont, and Irina Veretennicoff  »View Author Affiliations


JOSA A, Vol. 18, Issue 7, pp. 1741-1747 (2001)
http://dx.doi.org/10.1364/JOSAA.18.001741


View Full Text Article

Enhanced HTML    Acrobat PDF (494 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the dynamical behavior of optical Fabry–Perot resonators consisting of LiNbO3 slabs (x and c cut) that are coated with different (absorbing or lossless) dielectric multilayers deposited on both sides of the slabs. Bistable switching is observed experimentally. The buildup of beam fanning with time leads to destructive interference for a portion of the incident beam, inducing a change in absorption and heating, hence to switching off. As a result, self-pulsations appear whose frequency depends strongly on the input light intensity, the spot size, and the focusing. Switching and self-pulsations are not observed in the case of lossless coatings or for bare LiNbO3 slabs, although strong photorefractive beam fanning is still present. We also study the influence of the incident-beam characteristics (width and focusing) on the beam-fanning process and the pulsating behavior.

© 2001 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.4870) Nonlinear optics : Photothermal effects
(190.5330) Nonlinear optics : Photorefractive optics
(230.5440) Optical devices : Polarization-selective devices
(310.1620) Thin films : Interference coatings

History
Original Manuscript: August 14, 2000
Revised Manuscript: November 6, 2000
Manuscript Accepted: November 6, 2000
Published: July 1, 2001

Citation
Georgy Zartov, Tihomir Tenev, Krassimir Panajotov, Evgeny Popov, Rumiana Peyeva, Hugo Thienpont, and Irina Veretennicoff, "Photorefractive beam-fanning effect and self-pulsations in coated LiNbO3 slabs," J. Opt. Soc. Am. A 18, 1741-1747 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-7-1741


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, G. D. Body, J. M. Dziedzig, R. G. Smith, A. A. Ballman, J. J. Levenstein, K. Nassan, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966). [CrossRef]
  2. T. J. Hall, R. Jaura, L. M. Connor, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985). [CrossRef]
  3. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  4. V. V. Voronov, I. R. Dorosh, Yu. S. Kuz'minov, N. V. Tkachenko, “Photoinduced light scattering in BSN:Ce crystals,” (in Russian) Kvant. Elektron. (Moscow) 7(11), 2313–2318 (1980).
  5. J. Feinberg, “Asymmetric self-defocusing in an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46–51 (1982). [CrossRef]
  6. W. P. Brown, G. C. Valley, “Kinky beam paths inside photorefractive crystals,” J. Opt. Soc. Am. B 10, 1901–1906 (1993). [CrossRef]
  7. M. Snowbell, M. Horowitz, B. Fischer, “Dynamics of multiple two-wave mixing and fanning in photorefractive materials,” J. Opt. Soc. Am. B 11, 1972–1982 (1994). [CrossRef]
  8. J. Jarem, P. P. Banerjee, “Exact, dynamical analysis of the Kukhtarev equations in photorefractive barium titanate using rigorous coupled-wave diffraction theory,” J. Opt. Soc. Am. A 13, 819–831 (1996). [CrossRef]
  9. J. Jarem, P. P. Banerjee, “A nonlinear, transient analysis of two- and multi-wave mixing in a photorefractive material using rigorous coupled-wave diffraction theory,” Opt. Commun. 123, 825–842 (1996). [CrossRef]
  10. F. V. Karpushko, G. V. Sinitzyn, “An optical logic element for integrated optics in a nonlinear semiconductor interferometer,” (in Russian) Zh. Prikl. Spektrosk. 29, 1323–1326 (1978).
  11. S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A.C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in interference filters,” Opt. Commun. 51, 357–362 (1984). [CrossRef]
  12. A. C. Walker, “Reflection bistable etalons with absorbed transmission,” Opt. Commun. 59, 145–150 (1986). [CrossRef]
  13. S. D. Smith, A. C. Walker, B. S. Wherrett, F. A. P. Tooley, J. G. H. Mathew, M. R. Taghizadeh, I. Janossy, “Cascadable digital optical logic circuit elements in the visible and infrared: demonstration of some first all-optical circuits,” Appl. Opt. 25, 1586–1593 (1986). [CrossRef] [PubMed]
  14. B. S. Wherrett, D. Hutchings, D. Russell, “Optically bistable interference filters: optimization consideration,” J. Opt. Soc. Am. B 3, 351–362 (1986). [CrossRef]
  15. A.C. Hutchings, C. H. Wang, B. S. Wherrett, “Optically bistable interference filters: self-consistent modeling of nonlinear optical characteristics and optimization,” J. Opt. Soc. Am. B 8, 618–631 (1991). [CrossRef]
  16. R. W. Eason, A. Miller, eds., Nonlinear Optics in Signal Processing, Engineering Aspects in Lasers Series, T. A. Hall, ed. (Chapman & Hall, London, 1993).
  17. P. Mandel, S. D. Smith, B. S. Wherrett, eds., Optical Bistability Towards Optical Computing: The European Joint Optical Bistability Project (North-Holland, Amsterdam, 1987).
  18. I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally induced optical bistability in thin-film devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985). [CrossRef]
  19. I. Janossy, J. G. H. Mathew, E. Abraham, S. D. Smith, “Dynamics of thermally induced optical bistability,” IEEE J. Quantum Electron. QE-22, 2224–2229 (1986). [CrossRef]
  20. H. Thienpont, W. Peiffer, I. Veretennicoff, C. De Tandt, W. Ranson, R. Vounckx, A. Koster, “Optical logic planes with SIlicon IMpanted OXide technology: a first step towards low-cost smart pixels,” in Proceedings of the International Conference on Frontiers in Information Optics, T. Asakura, ed., Kyoto, Japan, 4–8 April 1994, p. 293.
  21. I. P. Areshev, T. A. Murina, N. N. Rosanov, V. K. Subashiev, “Polarization and amplitude optical multistability in a nonlinear ring cavity,” Opt. Commun. 47, 414–419 (1983). [CrossRef]
  22. A. Korpel, A. W. Lohmann, “Polarization and optical bistability,” Appl. Opt. 25, 1528–1529 (1986). [CrossRef] [PubMed]
  23. A. W. Lohmann, “Polarization and optical logic,” Appl. Opt. 25, 1594–1597 (1986). [CrossRef] [PubMed]
  24. N. I. Zheludev, “Polarization instabilities and multistabilities in nonlinear optics,” (in Russian) Usp. Fiz. Nauk 154(4), 683–717 (1989). [CrossRef]
  25. M. Pelt, H. Thienpont, I. Veretennicoff, “Aspects of cascadability and logic of polarization bistable Fabry–Perot resonators,” in Technical Digest of the Fifth European Quantum Electronics Conference EQEC'94 (Institute of Electrical and Electronics Engineers, New York, 1994), p. 65.
  26. K. Panajotov, T. Tenev, G. Zartov, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Polarization driven polarization bistability in anisotropic interference filters,” J. Nonlinear Opt. Phys. Mater. 5, 351–365 (1996). [CrossRef]
  27. K. Panajotov, T. Tenev, R. Peyeva, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Coupled thermo-optic multilayer model for intensity and polarization switching in interference filters,” Bulg. J. Phys. 24, 143–155 (1997).
  28. G. Zartov, T. Tenev, K. Panajotov, R. Peyeva, J. Danckaert, H. Thienpont, I. Veretennicoff, “Angular dependencies of thermo-optic bistable switching in interference filters,” in Proceedings of the Tenth ISCMP Conference “Thin Film Materials and Devices—Developments in Science and Technology,”J. M. Marshall, N. Kirov, A. Vavrek, J. M. Maud, eds. (World Scientific, Singapore, 1998), pp. 473–476.
  29. J.-J. Liu, P. P. Banerjee, Q. Wang Song, “Role of diffusive, photovoltaic, and thermal effects in beam fanning in LiNbO3” J. Opt. Soc. Am. B 11, 1688–1693 (1994). [CrossRef]
  30. A. Abraham, J. M. Halley, “Some calculations of temperature profiles in thin films with laser heating,” Appl. Phys. A: Solids Surf. 42, 279–285 (1987). [CrossRef]
  31. M. Haelterman, G. Vitrant, R. Reinisch, “Transverse effects in nonlinear planar resonators. I. Modal theory,” J. Opt. Soc. Am. B 7, 1309–1318 (1990). [CrossRef]
  32. G. Vitrant, M. Haelterman, R. Reinisch, “Transverse effects in nonlinear planar resonators. II. Modal analysis for normal and oblique incidence,” J. Opt. Soc. Am. B 7, 1319–1327 (1990). [CrossRef]
  33. M. Haelterman, G. Vitrant, “Drift instability and spatiotemporal dissipative structures in a nonlinear Fabry–Perot resonator under oblique incidence,” J. Opt. Soc. Am. B 9, 1563–1570 (1992). [CrossRef]
  34. M. Neviere, E. Popov, R. Reinisch, G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon & Breach, London, 2000).
  35. J. Danckaert, G. Vitrant, “Modulational instabilities in diffusive Kerr-type resonators,” Opt. Commun. 104, 196–206 (1993). [CrossRef]
  36. J. Danckaert, G. Vitrant, R. Reinisch, M. Georgiou, “Nonlinear dynamics in single-mode optical resonators,” Phys. Rev. A 48, 2324–2333 (1993). [CrossRef] [PubMed]
  37. J. Danckaert, “Nonlinear planar resonator for optical processing: simple models, including stratification, time, and polarization,” Ph.D. dissertation (Vrije Universiteit, Brussels, Belgium, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited