OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 8 — Aug. 1, 2001
  • pp: 1897–1904

Propagation of flat-topped multi-Gaussian laser beams

Anthony A. Tovar  »View Author Affiliations


JOSA A, Vol. 18, Issue 8, pp. 1897-1904 (2001)
http://dx.doi.org/10.1364/JOSAA.18.001897


View Full Text Article

Enhanced HTML    Acrobat PDF (236 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The multi-Gaussian beam shape is proposed as a model for aperture functions and laser beam profiles that have a nearly flat top but whose sides decrease continuously. Beams and apertures of this type represent a simple, elegant, and intuitive alternative to super-Gaussian beams, which are important in a number of applications such as laser resonator design. Analytical formulas are developed for the propagation of these beams through free space and optical systems representable by ABCD matrices.

© 2001 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(140.3410) Lasers and laser optics : Laser resonators
(260.1960) Physical optics : Diffraction theory
(350.5500) Other areas of optics : Propagation

History
Original Manuscript: July 3, 2000
Revised Manuscript: December 20, 2000
Manuscript Accepted: December 20, 2000
Published: August 1, 2001

Citation
Anthony A. Tovar, "Propagation of flat-topped multi-Gaussian laser beams," J. Opt. Soc. Am. A 18, 1897-1904 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-8-1897


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. De Silvestri, P. Laporta, V. Magni, O. Svelto, “Unstable laser resonators with super-Gaussian mirrors,” Opt. Lett. 13, 201–203 (1988). [CrossRef] [PubMed]
  2. S. De Silvestri, P. Laporta, V. Magni, G. Valentini, G. Cerullo, “Comparative analysis of Nd:YAG unstable resonators with super-Gaussian variable reflectance mirrors,” Opt. Commun. 77, 179–184 (1990). [CrossRef]
  3. S. De Silvestri, V. Magni, O. Svelto, G. Valentini, “Lasers with super-Gaussian mirrors,” IEEE J. Quantum Electron. 26, 1500–1509 (1990). [CrossRef]
  4. P. A. Bélanger, R. L. Lachance, C. Paré, “Super-Gaussian output from a CO2 laser by using a graded-phase mirror resonator,” Opt. Lett. 17, 739–741 (1991). [CrossRef]
  5. A. Parent, M. Morin, P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quantum Electron. 24, 1071–1079 (1992). [CrossRef]
  6. M. S. Bowers, “Diffractive analysis of unstable optical resonators with super-Gaussian mirrors,” Opt. Lett. 19, 1319–1321 (1992). [CrossRef]
  7. J. Serna, P. M. Mejias, Martinez-Herrero, “Quality changes of Hermite–Gauss mode beams and Gauss Schell-model fields propagating through super-Gaussian apertures,” Opt. Commun. 102, 162–168 (1993).
  8. M. R. Perrone, A. Piegari, S. Scaglione, “On the super-Gaussian unstable resonators for high-gain short-pulse laser media,” IEEE J. Quantum Electron. 29, 1423–1427 (1993). [CrossRef]
  9. J. Ojeda-Castañeda, G. Saavedra, E. Lopez-Olazagasti, “Super-Gaussian beams of continuous order as GRIN modes,” Opt. Commun. 102, 21–24 (1993). [CrossRef]
  10. R. van Neste, C. Paré, R. L. Lachance, P. A. Bélanger, “Graded-phase mirror resonator with a super-Gaussian output in a CW-CO2 laser,” IEEE J. Quantum Electron. 30, 2663–2669 (1994). [CrossRef]
  11. J. J. Wen, M. A. Breazeale, “A diffraction beam field expressed as a superposition of Gaussian beams,” J. Acoust. Soc. Am. 83, 1752–1756 (1988). [CrossRef]
  12. D. Ding, X. Liu, “Approximate description for Bessel, Bessel–Gauss, and Gaussian beams with finite aperture,” J. Opt. Soc. Am. A 16, 1286–1293 (1999). [CrossRef]
  13. F. Gori, “Flattened Gaussian beams,” Opt. Commun. 107, 335–341 (1994). [CrossRef]
  14. V. Bagini, R. Borghi, F. Gori, A. M. Pacileo, M. Santarsiero, D. Ambrosini, G. S. Spagnolo, “Propagation of axially symmetric flattened Gaussian beams,” J. Opt. Soc. Am. A 13, 1385–1394 (1996). [CrossRef]
  15. A. A. Tovar, L. W. Casperson, “Generalized beam matrices: Gaussian beam propagation in misaligned complex optical systems,” J. Opt. Soc. Am. A 12, 1522–1533 (1995). [CrossRef]
  16. L. W. Casperson, A. A. Tovar, “Hermite–sinusoidal-Gaussian beams in complex optical systems,” J. Opt. Soc. Am. A 15, 954–961 (1998). [CrossRef]
  17. A. A. Tovar, L. W. Casperson, “Production and propagation of Hermite–sinusoidal-Gaussian beams,” J. Opt. Soc. Am. A 15, 2425–2432 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited