OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 8 — Aug. 1, 2001
  • pp: 1912–1928

Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings

Jon M. Bendickson, Elias N. Glytsis, Thomas K. Gaylord, and David L. Brundrett  »View Author Affiliations


JOSA A, Vol. 18, Issue 8, pp. 1912-1928 (2001)
http://dx.doi.org/10.1364/JOSAA.18.001912


View Full Text Article

Enhanced HTML    Acrobat PDF (908 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of finite beams and finite gratings on the performance of guided-mode resonant subwavelength gratings are characterized by using the rigorous boundary element method. The gratings are strongly modulated, have a finite number of periods, and are illuminated by normally incident Gaussian beams. Quantitative results are presented for silicon-on-sapphire resonant gratings and gallium arsenide–aluminum arsenide resonant gratings.

© 2001 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(050.2770) Diffraction and gratings : Gratings
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics

History
Original Manuscript: September 27, 2000
Revised Manuscript: January 2, 2001
Manuscript Accepted: January 2, 2001
Published: August 1, 2001

Citation
Jon M. Bendickson, Elias N. Glytsis, Thomas K. Gaylord, and David L. Brundrett, "Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings," J. Opt. Soc. Am. A 18, 1912-1928 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-8-1912


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. C. McPhedran, L. C. Botten, M. S. Craig, M. Nevière, D. Maystre, “Lossy lamellar gratings in the quasistatic limit,” Opt. Acta 29, 289–312 (1982). [CrossRef]
  2. R. C. Enger, S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983). [CrossRef] [PubMed]
  3. T. K. Gaylord, W. E. Baird, M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25, 4562–4567 (1986). [CrossRef] [PubMed]
  4. D. L. Brundrett, “Analysis, design, and applications of subwavelength diffraction gratings,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, Georgia, 1997).
  5. M. Nevière, R. Petit, M. Cadilhac, “About the theory of optical grating coupler-waveguide systems,” Opt. Commun. 8, 113–117 (1973). [CrossRef]
  6. L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985). [CrossRef]
  7. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985). [CrossRef]
  8. S. S. Wang, R. Magnusson, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1464–1468 (1990). [CrossRef]
  9. S. Peng, G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13, 993–1005 (1996). [CrossRef]
  10. S. M. Norton, G. M. Morris, T. Erdogan, “Experimental investigations of resonant-grating filter lineshapes in comparison with theoretical models,” J. Opt. Soc. Am. A 15, 464–472 (1998). [CrossRef]
  11. D. Rosenblatt, A. Sharon, A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997). [CrossRef]
  12. S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993). [CrossRef] [PubMed]
  13. S. S. Wang, R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34, 2414–2420 (1995). [CrossRef] [PubMed]
  14. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett. 21, 1564–1566 (1996). [CrossRef] [PubMed]
  15. J. A. Cox, R. A. Morgan, R. Wilke, C. Ford, “Guided-mode grating resonant filters for VCSEL applications,” in Diffractive and Holographic Device Technologies and Applications V, I. Cindrich, S. H. Lee, eds., Proc. SPIE3291, 70–76 (1998). [CrossRef]
  16. I. A. Avrutskii, G. A. Golubenko, V. A. Sychugov, A. V. Tishchenko, “Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16, 1063–1065 (1986). [CrossRef]
  17. I. A. Avrutskii, V. A. Sychugov, “Reflection of a bounded light beam from the surface of a periodically perturbed waveguide,” Sov. Phys. Tech. Phys. 32, 235–236 (1987).
  18. I. A. Avrutskii, V. P. Duraev, E. T. Nedelin, A. M. Prokhorov, A. V. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Optimization of the characteristic of a dispersive element based on a corrugated waveguide,” Sov. J. Quantum Electron. 18, 362–365 (1988). [CrossRef]
  19. M. Shimizu, F. Koyama, K. Iga, “Polarization characteristics of MOCVD grown GaAs/GaAlAs CBH surface emitting lasers,” Jpn. J. Appl. Phys. Part 1 27, 1774–1775 (1988). [CrossRef]
  20. L. Zhuang, S. Schablitsky, R. C. Shi, S. Y. Chou, “Fabrication and performance of thin amorphous Si subwavelength transmission grating for controlling vertical cavity surface emitting laser polarization,” J. Vac. Sci. Technol. B 14, 4055–4057 (1996). [CrossRef]
  21. S. J. Schablitsky, L. Zhuang, R. C. Shi, S. Y. Chou, “Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings,” Appl. Phys. Lett. 69, 7–9 (1996). [CrossRef]
  22. M. Nevière, M. Vincent, R. Petit, M. Cadilhac, “Determination of the coupling coefficient of a holographic thin film coupler,” Opt. Commun. 9, 240–245 (1973). [CrossRef]
  23. I. A. Avrutskii, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36, 1527–1539 (1989). [CrossRef]
  24. S. Zhang, T. Tamir, “Spatial modifications of Gaussian beams diffracted by reflection gratings,” J. Opt. Soc. Am. A 6, 1368–1381 (1989). [CrossRef]
  25. R. Magnusson, S. S. Wang, “Optical waveguide-grating filters,” in International Conference on Holography, Correlation Optics, and Recording Materials, O. V. Angelsky, ed., Proc. SPIE2108, 380–390 (1993). [CrossRef]
  26. L. F. DeSandre, J. M. Elson, “Extinction-theorem analysis of diffraction anomalies in overcoated gratings,” J. Opt. Soc. Am. A 8, 763–777 (1991). [CrossRef]
  27. J. Saarinen, E. Noponen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34, 2560–2565 (1995). [CrossRef]
  28. K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. Soc. Am. 68, 1206–1210 (1978). [CrossRef]
  29. D. K. Jacob, S. C. Dunn, M. G. Moharam, “Design considerations for narrow-band dielectric resonant grating reflection filters of finite length,” J. Opt. Soc. Am. A 17, 1241–1249 (2000). [CrossRef]
  30. R. R. Boye, R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt. 39, 3649–3653 (2000). [CrossRef]
  31. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, “Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,” Opt. Lett. 23, 700–702 (1998). [CrossRef]
  32. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, J. M. Bendickson, “Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence,” J. Opt. Soc. Am. A 17, 1221–1230 (2000). [CrossRef]
  33. K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996). [CrossRef]
  34. K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–917 (1997). [CrossRef]
  35. E. N. Glytsis, M. E. Harrigan, K. Hirayama, T. K. Gaylord, “Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation,” Appl. Opt. 37, 34–43 (1998). [CrossRef]
  36. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998). [CrossRef]
  37. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Metallic surface-relief on-axis and off-axis focusing diffractive cylindrical mirrors,” J. Opt. Soc. Am. A 16, 113–130 (1999). [CrossRef]
  38. D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
  39. T. Kojima, J. Ido, “Boundary-element method analysis of light-beam scattering and the sum and differential signal output by DRAW-type optical disk models,” Electron. Commun. Jpn. Part 2 74, 11–20 (1991). [CrossRef]
  40. K. Hirayama, K. Igarashi, Y. Hayashi, E. N. Glytsis, T. K. Gaylord, “Finite-substrate-thickness cylindrical diffractive lenses: exact and approximate boundary element methods,” J. Opt. Soc. Am. A 16, 1294–1302 (1999). [CrossRef]
  41. K. Yashiro, S. Ohkawa, “Boundary element method for electromagnetic scattering from cylinders,” IEEE Trans. Antennas Propag. AP-33, 383–389 (1985). [CrossRef]
  42. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  43. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  44. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Modeling considerations for rigorous boundary element method analysis of diffractive optical elements,” J. Opt. Soc. Am. A 18, 1495–1507 (2001). [CrossRef]
  45. A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4158 (1996). [CrossRef]
  46. S. Tibuleac, R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617–1626 (1997). [CrossRef]
  47. T. Tamir, S. Zhang, “Resonant scattering by multilayered dielectric gratings,” J. Opt. Soc. Am. A 14, 1607–1616 (1997). [CrossRef]
  48. D. Maystre, M. Nevière, P. Vincent, “On a general theory of anomalies and energy absorption by diffraction gratings and their relation with surface waves,” Opt. Acta 25, 905–915 (1978). [CrossRef]
  49. M. Koshiba, Optical Waveguide Theory by the Finite Element Method (KTK Scientific, Tokyo, 1992), pp. 43–47.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited