## Radiation forces in the discrete-dipole approximation

JOSA A, Vol. 18, Issue 8, pp. 1944-1953 (2001)

http://dx.doi.org/10.1364/JOSAA.18.001944

Acrobat PDF (296 KB)

### Abstract

The theory of the discrete-dipole approximation (DDA) for light scattering is extended to allow for the calculation of radiation forces on each dipole in the DDA model. Starting with the theory of Draine and Weingartner [Astrophys. J. **470**, 551 (1996)] we derive an expression for the radiation force on each dipole. These expressions are reformulated into discrete convolutions, allowing for an efficient, O(N log N) evaluation of the forces. The total radiation pressure on the particle is obtained by summation of the individual forces. The theory is tested on spherical particles. The resulting accumulated radiation forces are compared with Mie theory. The accuracy is within the order of a few percent, i.e., comparable with that obtained for extinction cross sections calculated with the DDA.

© 2001 Optical Society of America

**OCIS Codes**

(260.2110) Physical optics : Electromagnetic optics

(290.0290) Scattering : Scattering

(290.5850) Scattering : Scattering, particles

**Citation**

A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, "Radiation forces in the discrete-dipole approximation," J. Opt. Soc. Am. A **18**, 1944-1953 (2001)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-8-1944

Sort: Year | Journal | Reset

### References

- P. Debye, “Der Lichtdruck auf Kugeln von beliebigem Material,” Ann. Phys. (Leipzig) 30, 57–136 (1909).
- C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
- A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
- A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
- A. Ashkin and J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980).
- A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
- S. Chu, “The manipulation of neutral particles,” Rev. Mod. Phys. 60, 685–706 (1998).
- K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993).
- K. O. Greulich, Micromanipulation by Light in Biology and Medicine: The Laser Microbeam and Optical Tweezers (Birkhauser, Boston, Mass., 1999).
- P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666–1673 (1995).
- S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271, 795–799 (1996).
- T. R. Lettieri, W. D. Jenkins, and D. A. Swyt, “Sizing of individual optically levitated evaporating droplets by measurement of resonances in the polarization ratio,” Appl. Opt. 20, 2799–2805 (1981).
- F. Guilloteau, G. Grehan, and G. Gousbet, “Optical levitation experiments to assess the validity of the generalized Lorenz–Mie theory,” Appl. Opt. 31, 2942–2951 (1992).
- R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. de Grooth, and J. Greve, “Elastic light scattering measurements of single biological cells in an optical trap,” Appl. Opt. 34, 729–734 (1996).
- B. T. Draine and J. C. Weingartner, “Radiative torques on interstellar grains I. Superthermal spin-up,” Astrophys. J. 470, 551–565 (1996).
- B. T. Draine and J. C. Weingartner, “Radiative torques on interstellar grains II. Grain alignment,” Astrophys. J. 480, 633–646 (1997).
- A. Kriviv, H. Kimura, and I. Mann, “Dynamics of dust near the sun,” Icarus 134, 311–327 (1998).
- H. Kimura and I. Mann, “Radiation pressure cross section for fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transf. 60, 425–438 (1998).
- T. Mukai, H. Ishimoto, T. Kozasca, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315–320 (1992).
- C. Dominik and A. G. G. M. Tielens, “The physics of dust coagulation and the structure of dust aggregates in space,” Astrophys. J. 480, 647–673 (1997).
- C. Dominik and R. Waters, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands (personal communication, 1999).
- M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds., Light Scattering by Nonspherical Particles (Academic, San Diego, Calif., 1999).
- K. Lumme and J. Rahola, “Light scattering by porous dust particles in the discrete-dipole approximation,” Astrophys. J. 425, 653–667 (1994).
- Z. Xing and M. S. Hanner, “Light scattering by aggregate particles,” Astron. Astrophys. 324, 805–820 (1997).
- T. Kozasa, J. Blum, and T. Mukai, “Optical properties of dust aggregates I. Wavelength dependence,” Astron. Astrophys. 263, 423–432 (1992).
- T. Kozasa, J. Blum, H. Okamoto, and T. Mukai, “Optical properties of dust aggregates II. Angular dependence of scattered light,” Astron. Astrophys. 276, 278–288 (1993).
- B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
- B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
- B. T. Draine, “The discrete dipole approximation for light scattering by irregular targets,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, San Diego, Calif., 1999), Chap. 5.
- J. P. Gordon, “Radiation force and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
- J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discrete-dipole approximation,” Opt. Lett. 16, 1198–2000 (1991).
- W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1988).
- A. G. Hoekstra and P. M. A. Sloot, “Coupled dipole simulations of elastic light scattering on parallel systems,” Int. J. Mod. Phys. C 6, 663–679 (1995).
- A. G. Hoekstra, M. D. Grimminck, and P. M. A. Sloot, “Large scale simulations of elastic light scattering by a fast discrete dipole approximation,” Int. J. Mod. Phys. C 9, 87–102 (1998).
- M. Frijlink, “Application of the discrete dipole approximation to radiation pressure calculations on dust-aggregates: an exploration,” M.Sc. thesis (University of Amsterdam, Amsterdam, 2000).
- A. G. Hoekstra, J. Rahola, and P. M. A. Sloot, “Accuracy of internal fields in volume integral equation simulations of light scattering,” Appl. Opt. 37, 8482–8497 (1998).
- A. G. Hoekstra, “Computer simulations of elastic light scattering, implementations and applications,” Ph.D. dissertation (University of Amsterdam, Amsterdam, 1994).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.