OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 8 — Aug. 1, 2001
  • pp: 1954–1961

Model acquisition and invariant tracking of unknown materials in hyperspectral images

David Slater and Glenn Healey  »View Author Affiliations

JOSA A, Vol. 18, Issue 8, pp. 1954-1961 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (1204 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider the problem of acquiring models for unknown materials in airborne 0.4–2.5 μm hyperspectral imagery and using these models to identify the unknown materials in image data obtained under significantly different conditions. The material models are generated with use of an airborne sensor spectrum measured under unknown conditions and a physical model for spectral variability. For computational efficiency, the material models are represented by using low-dimensional spectral subspaces. We demonstrate the effectiveness of the material models by using a set of material tracking experiments in HYDICE images acquired in forest and desert environments over widely varying conditions. We show that techniques based on the new representation significantly outperform methods based on direct spectral matching.

© 2001 Optical Society of America

OCIS Codes
(150.0150) Machine vision : Machine vision
(280.0280) Remote sensing and sensors : Remote sensing and sensors

Original Manuscript: February 8, 2001
Manuscript Accepted: February 13, 2001
Published: August 1, 2001

David Slater and Glenn Healey, "Model acquisition and invariant tracking of unknown materials in hyperspectral images," J. Opt. Soc. Am. A 18, 1954-1961 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Besl, R. Jain, “Three-dimensional object recognition,” ACM Comput. Surv. 17, 75–145 (1985). [CrossRef]
  2. T. O. Binford, “Survey of model-based image analysis systems,” Int. J. Robot. Res. 1, 18–64 (1982). [CrossRef]
  3. R. Chin, C. Dyer, “Model-based recognition in robot vision,” ACM Comp. Surv. 18, 67–108 (1986). [CrossRef]
  4. A. K. Jain, P. J. Flynn, editors. Three-Dimensional Object Recognition Systems (Elsevier, Amsterdam, 1993).
  5. D. P. Huttenlocher, S. Ullman, “Recognizing solid objects by alignment,” Int. J. Comput. Vision 5, 195–212 (1990). [CrossRef]
  6. D. Lowe, Perceptual Organization and Visual Recognition (Kluwer Academic, Norwell, Mass., 1985).
  7. W. E. L. Grimson, D. P. Huttenlocher, “On the sensitivity of the Hough transform for object recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 255–274 (1990). [CrossRef]
  8. A. Pentland, “Perceptual organization and representation of natural form,” Artif. Intell. 28, 293–331 (1986). [CrossRef]
  9. S. Dickinson, A. Pentland, A. Rosenfeld, “3-D shape recovery using distributed aspect matching,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 174–198 (1992). [CrossRef]
  10. M. Swain, D. Ballard, “Color indexing,” Int. J. Comput. Vision 7, 11–32 (1991). [CrossRef]
  11. G. Healey, D. Slater, “Global color constancy: recognition of objects by use of illumination-invariant properties of color distributions,” J. Opt. Soc. Am. A 11, 3003–3010 (1994). [CrossRef]
  12. G. Healey, D. Slater, “Computing illumination-invariant descriptors of spatially filtered color image regions,” IEEE Trans. Image Process. 6, 1002–1013 (1997). [CrossRef] [PubMed]
  13. G. Healey, A. Jain, “Retrieving multispectral satellite images using physics-based invariant representations,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 842–848 (1996). [CrossRef]
  14. D. Judd, D. MacAdam, G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964). [CrossRef]
  15. D. Slater, G. Healey, “Analyzing the spectral dimensionality of outdoor visible and near-infrared illumination functions,” J. Opt. Soc. Am. A 15, 2913–2920 (1998). [CrossRef]
  16. R. W. Basedow, D. C. Armer, M. E. Anderson, “HYDICE system: implementation and performance,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 258–267 (1995). [CrossRef]
  17. G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, W. Porter, “The airborne visible infrared imaging spectrometer,” Remote Sens. Environ. 44, 127–143 (1993). [CrossRef]
  18. C. G. Simi, S. G. Beaven, E. M. Winter, C. LaSota, J. Parish, R. Dixon, “Night vision imaging spectrometer (NVIS) performance parameters and their impact on various detection algorithms,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 218–229 (2000). [CrossRef]
  19. G. Healey, D. Slater, “Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions,” IEEE Trans. Geosci. Remote Sens. 37, 2706–2717 (1999). [CrossRef]
  20. A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” (Geophysics Laboratory, Bedford, Mass.1989).
  21. J. R. Schott, Remote Sensing: The Image Chain Approach (Oxford U. Press, New York, 1997).
  22. Z. Pan, G. Healey, D. Slater, “Modeling the spectral variability of ground irradiance functions,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 82–93 (2000). [CrossRef]
  23. G. H. Golub, C. F. van Loan, Matrix Computations (Johns HopkinsU. Press, Baltimore, Md., 1983).
  24. P. Suen, G. Healey, D. Slater, “Material identification over variation of scene conditions and viewing geometry,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 18–29 (2000). [CrossRef]
  25. R. Duda, P. Hart, Pattern Classification and Scene Analysis (Wiley-Interscience, New York, 1973).
  26. F. A. Kruse, A. B. Lefkoff, J. W. Boardman, K. B. Heide-brecht, A. F. H. Goetz, “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data,” Remote Sens. Environ. 44, 145–163 (1993). [CrossRef]
  27. A. Leon-Garcia, Probability and Random Processes for Electrical Engineering, 2nd ed. (Addison-Wesley, Reading, Mass., 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited