OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 8 — Aug. 1, 2001
  • pp: 1993–2001

Integral equations applied to wave propagation in two dimensions: modeling the tip of a near-field scanning optical microscope

Christopher M. Kelso, P. David Flammer, J. A. DeSanto, and R. T. Collins  »View Author Affiliations


JOSA A, Vol. 18, Issue 8, pp. 1993-2001 (2001)
http://dx.doi.org/10.1364/JOSAA.18.001993


View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a Green’s-function/Green’s-theorem integral equation approach to numerically modeling two-dimensional, s-polarized, wave propagation problems effectively for a variety of geometries. The model accurately calculates both near fields and far fields because of the minimal assumptions made on the behavior of the scattered radiation. The method was applied to modeling light emission from a near-field scanning optical microscope fiber tip. Several convergence and energy tests were used to give confidence in the results. The behavior of intensity and power near the tip was investigated. The effects of changing the dielectric constant of a sample material located below the tip were also examined.

© 2001 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(110.0180) Imaging systems : Microscopy
(110.2350) Imaging systems : Fiber optics imaging
(180.5810) Microscopy : Scanning microscopy
(260.2110) Physical optics : Electromagnetic optics

History
Original Manuscript: September 7, 2000
Revised Manuscript: December 18, 2000
Manuscript Accepted: December 18, 2000
Published: August 1, 2001

Citation
Christopher M. Kelso, P. David Flammer, J. A. DeSanto, and R. T. Collins, "Integral equations applied to wave propagation in two dimensions: modeling the tip of a near-field scanning optical microscope," J. Opt. Soc. Am. A 18, 1993-2001 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-8-1993


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Durig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986). [CrossRef]
  2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991). [CrossRef] [PubMed]
  3. G. A. Valaskovic, M. Holton, G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1228 (1995). [CrossRef] [PubMed]
  4. K. Fukuzawa, H. Kuwano, “Conversion of evanescent into propagating light in near-field scanning optical microscopy,” J. Appl. Phys. 79, 8174–8178 (1996). [CrossRef]
  5. E. Wolf, J. T. Foley, “Do evanescent waves contribute to the far field?” Opt. Lett. 23, 16–18 (1998). [CrossRef]
  6. L. Novotny, B. Hecht, D. W. Pohl, “Implications of high resolution to near-field optical microscopy,” Ultramicroscopy 71, 341–343 (1998). [CrossRef]
  7. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944). [CrossRef]
  8. C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep. 5, 321–332 (1950).
  9. G. W. Bryant, “Probing quantum nanostructures with near-field optical microscopy and vice versa,” Appl. Phys. Lett. 72, 768–770 (1998). [CrossRef]
  10. G. W. Bryant, E. L. Shirley, L. S. Goldner, E. B. McDaniel, J. W. P. Hsu, R. J. Tonucci, “Theory of probing photonic crystal with transmission near-field optical microscopy,” Phys. Rev. B 58, 2131–2141 (1998). [CrossRef]
  11. O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995). [CrossRef] [PubMed]
  12. P. J. Valle, R. Carminati, J-J. Greffet, “Contrast mechanisms in illumination-mode SNOM,” Ultramicroscopy 71, 39–48 (1998). [CrossRef]
  13. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).
  14. D. A. Christensen, “Analysis of near field tip patterns including object interaction using finite-difference time-domain,” Ultramicroscopy 57, 189–195 (1995). [CrossRef]
  15. H. Furukawa, S. Kawata, “Analysis of image formation in a near-field scanning optical microscope: effects of multiple scattering,” Opt. Commun. 132, 170–178 (1996). [CrossRef]
  16. R. Muller, C. Lienau, “Propagation of femtosecond optical pulses through uncoated and metal-coated near-field fiber probes,” Appl. Phys. Lett. 76, 3367–3369 (2000). [CrossRef]
  17. E. Vasilyeva, A. Taflove, “Three-dimensional modeling of amplitude-object imaging in scanning near-field optical microscopy,” Opt. Lett. 23, 1155–1157 (1998). [CrossRef]
  18. L. Novotny, D. W. Pohl, P. Regali, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994). [CrossRef]
  19. L. Novotny, D. W. Pohl, B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995). [CrossRef]
  20. D. W. Pohl, D. Courjon, eds., Near Field Optics, NATO ASI Series E (Kluwer, Academic, Dordrecht, The Netherlands, 1993), Vol. 242.
  21. J. A. DeSanto, Scalar Wave Theory: Green’s Functions and Applications (Springer, Heidelberg, 1992).
  22. D. Colton, R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York, 1983).
  23. J. A. DeSanto, P. A. Martin, “On angular-spectrum representations for scattering by infinite rough surfaces,” J. Wave Motion 24, 421–433 (1996). [CrossRef]
  24. J. A. DeSanto, P. A. Martin, “On the derivation of boundary integral equations for scattering by an infinite one-dimensional rough surface,” J. Acoust. Soc. Am. 102, 67–77 (1997). [CrossRef]
  25. M. Abramowitz, I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1972).
  26. D. S. Jones, Methods in Electromagnetic Wave Propagation (Oxford U. Press, Oxford, UK, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited