OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 8 — Aug. 1, 2001
  • pp: 2009–2014

Beam propagation through uniaxial anisotropic media: global changes in the spatial profile

R. Martı́nez-Herrero, J. M. Movilla, and P. M. Mejı́as  »View Author Affiliations

JOSA A, Vol. 18, Issue 8, pp. 2009-2014 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (149 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The propagation of electromagnetic beams through uniaxial anisotropic media is investigated. The Maxwell equations are solved in the paraxial limit in terms of the plane-wave spectrum associated with each Cartesian field component. Attention is focused on the global changes in the spatial structure of the beam, which are described by means of the second-order intensity moment formalism. In particular, the propagation law for the intensity moments through this kind of media is obtained. As a consequence it is inferred that it is possible to improve the beam-quality parameter by using these media.

© 2001 Optical Society of America

OCIS Codes
(260.1440) Physical optics : Birefringence
(350.5500) Other areas of optics : Propagation

Original Manuscript: June 2, 2000
Revised Manuscript: December 13, 2000
Manuscript Accepted: December 13, 2000
Published: August 1, 2001

R. Martı́nez-Herrero, J. M. Movilla, and P. M. Mejı́as, "Beam propagation through uniaxial anisotropic media: global changes in the spatial profile," J. Opt. Soc. Am. A 18, 2009-2014 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Fleck, M. D. Feit, “Beam propagation in uniaxial media,” J. Opt. Soc. Am. 73, 920–926 (1983). [CrossRef]
  2. C. L. Xu, W. P. Huang, J. Chrostowski, S. K. Chaudhuri, “A full-vectorial beam propagation method for anisotropic waveguides,” J. Lightwave Technol. 12, 1926–1931 (1994). [CrossRef]
  3. T. Sonoda, S. Kozaki, “Reflection and transmission of Gaussian beam of a uniaxially anisotropic medium,” Electron. Commun. Jpn. 72, 95–103 (1989). [CrossRef]
  4. T. Sonoda, S. Kozaki, “Reflection and transmission of Gaussian beam from an anisotropic dielectric slab,” Electron. Commun. Jpn. 73, 85–92 (1990). [CrossRef]
  5. G. D. Landry, T. A. Maldonado, “Gaussian beam transmission and reflection from a general anisotropic multilayer structure,” Appl. Opt. 35, 5870–5879 (1996). [CrossRef] [PubMed]
  6. D. G. Hall, “Vector-beam solutions of Maxwell’s wave equation,” Opt. Lett. 21, 9–11 (1996). [CrossRef] [PubMed]
  7. S. R. Seshadri, “Electromagnetic Gaussian beam,” J. Opt. Soc. Am. A 15, 2712–2719 (1998). [CrossRef]
  8. P. Varga, P. Török, “The Gaussian wave solution of Maxwell’s equations and the validity of scalar wave approximation,” Opt. Commun. 152, 108–118 (1998). [CrossRef]
  9. C. J. R. Sheppard, “Polarization of almost-plane waves,” J. Opt. Soc. Am. A 17, 335–341 (2000). [CrossRef]
  10. “Optics and optical instruments—lasers and laser related equipment—test methods for laser beam parameters:Beam widths, divergence angle and beam propagation factor,” ISO/DIS 11146 (International Organization for Standardization, Geneva, 1995).
  11. S. Lavi, R. Prochaska, E. Keren, “Generalized beam parameters and transformation law for partially coherent light,” Appl. Opt. 27, 3696–3703 (1988). [CrossRef] [PubMed]
  12. M. J. Bastiaans, “Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems,” Optik (Stuttgart) 82, 173–181 (1989).
  13. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990). [CrossRef]
  14. J. Serna, R. Martı́nez-Herrero, P. M. Mejı́as, “Parametric characterization of general partially coherent beams propagating through ABCD optical systems,” J. Opt. Soc. Am. A 8, 1094–1098 (1991). [CrossRef]
  15. H. Weber, “Propagation of higher-order intensity moments in quadratic-index media,” Opt. Quantum Electron. 24, 1027–1049 (1992). [CrossRef]
  16. R. Martı́nez-Herrero, P. M. Mejı́as, J. M. Movilla, “Spa-tial characterization of partially polarized beams,” Opt. Lett. 22, 206–208 (1997). [CrossRef]
  17. J. M. Movilla, G. Piquero, R. Martı́nez-Herrero, P. M. Mejı́as, “Parametric characterization of non-uniformly polarized beams,” Opt. Commun. 149, 230–234 (1998). [CrossRef]
  18. M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1993).
  19. M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. A 69, 1710–1716 (1979). [CrossRef]
  20. J. Serna, J. M. Movilla, “Orbital angular momentum of partially coherent beams,” Opt. Lett. 26, 504–507 (2001). [CrossRef]
  21. H. A. Hauss, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N. J., 1984).
  22. M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975). [CrossRef]
  23. H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1556 (1966). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited