OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 9 — Sep. 1, 2001
  • pp: 2164–2170

Transformation equations in polarization optics of inhomogeneous birefringent media

Leo Ainola and Hillar Aben  »View Author Affiliations


JOSA A, Vol. 18, Issue 9, pp. 2164-2170 (2001)
http://dx.doi.org/10.1364/JOSAA.18.002164


View Full Text Article

Enhanced HTML    Acrobat PDF (142 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The quaternion formalism has been used to derive new systems of equations that describe transformation of the polarization of light in inhomogeneous birefringent media. In quaternion algebra the problem of parametric representation of the unitary transformation matrix reduces to the problem of formulation of the quaternion in trigonometric form. It is shown that this can be done in 30 different ways and that to each trigonometric form corresponds its own system of transformation equations. The six simplest systems of transformation equations have been derived.

© 2001 Optical Society of America

OCIS Codes
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

History
Original Manuscript: November 6, 2000
Revised Manuscript: February 21, 2001
Manuscript Accepted: February 21, 2001
Published: September 1, 2001

Citation
Leo Ainola and Hillar Aben, "Transformation equations in polarization optics of inhomogeneous birefringent media," J. Opt. Soc. Am. A 18, 2164-2170 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-9-2164


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. R. Stokes, The Theory of the Optical Properties of Inhomogeneous Materials (Spon, London, 1963).
  2. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, New York, 1977).
  3. H. Aben, Integrated Photoelasticity (McGraw-Hill, New York, 1979).
  4. P. S. Theocaris, E. E. Gdoutos, Matrix Theory of Photoelasticity (Springer-Verlag, Berlin, 1979).
  5. P. McIntyre, A. W. Snyder, “Light propagation in twisted anisotropic media: application to photoreceptors,” J. Opt. Soc. Am. 68, 149–157 (1978). [CrossRef] [PubMed]
  6. H. K. Aben, “Optical phenomena in photoelastic models by the rotation of principal axes,” Exp. Mech. 6, 13–22 (1966). [CrossRef]
  7. H. Aben, “Characteristic directions in optics of twisted birefringent media,” J. Opt. Soc. Am. A 3, 1414–1421 (1986). [CrossRef]
  8. L. Ainola, H. Aben, “Duality in optical theory of twisted birefringent media,” J. Opt. Soc. Am. A 16, 2545–2549 (1999). [CrossRef]
  9. J. Josepson, “Curious optical phenomena in integrated photoelasticity,” in Recent Advances in Experimental Mechanics, J. F. Silva Gomes, F. B. Branco, F. Martins de Brito, J. Gil Saraiva, M. Luerdes Eusébio, J. Sousa Cirne, A. Correia de Cruz, eds. (A. A. Balkema, Rotterdam, The Netherlands, 1994), Vol. 1, pp. 91–94.
  10. H. Aben, J. Josepson, “Strange interference blots in the interferometry of inhomogeneous birefringent objects,” Appl. Opt. 36, 7172–7179 (1997). [CrossRef]
  11. H. Aben, L. Ainola, “Interference blots and fringe dislocations in optics of twisted birefringent media,” J. Opt. Soc. Am. A 15, 2404–2411 (1998). [CrossRef]
  12. F. E. Neumann, “Die Gesetze der Doppelbrechung des Lichts in komprimierten order ungleichförmig erwärmten unkrystallinischen Körpern,” Abh. Kön. Akad. Wiss. Berlin 2, 3–254 (1843).
  13. R. D. Mindlin, L. E. Goodman, “The optical equations of three-dimensional photoelasticity,” J. Appl. Phys. 20, 89–95 (1949). [CrossRef]
  14. A. Kuske, “Die Gesetzmässigkeiten der Doppelbrechung,” Optik (Stuttgart) 19, 261–272 (1962).
  15. R. C. Jones, “A new calculus for the treatment of optical systems. VII,” J. Opt. Soc. Am. 38, 671–685 (1948). [CrossRef]
  16. C. Whitney, “Pauli-algebraic operators in polarization optics,” J. Opt. Soc. Am. 61, 1207–1213 (1971). [CrossRef]
  17. H. Takenaka, “A unified formalism for polarization optics by using group theory. I (Theory),” Jpn. J. Appl. Phys. 12, 226–231 (1973). [CrossRef]
  18. S. Li, “Jones-matrix analysis with Pauli matrices: application to ellipsometry,” J. Opt. Soc. Am. A 17, 920–926 (2000). [CrossRef]
  19. J. Cernosek, “Simple geometrical method for analysis of elliptical polarization,” J. Opt. Soc. Am. 61, 324–327 (1971). [CrossRef]
  20. C. K. Lee, C. P. Hu, “The geometric meaning method—quantitative determination of polarization,” in Proceedings of the Seventh International Conference on Experimental Stress Analysis (Israel Institute of Technology, Haifa, Israel, 1982), pp. 431–432.
  21. F. D. Murnaghan, The Unitary and Rotation Groups (Spartan, Washington, D.C., 1962).
  22. A. S. Marathay, “Operator formalism in the theory of partial polarization,” J. Opt. Soc. Am. 55, 969–980 (1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited