OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 9 — Sep. 1, 2001
  • pp: 2175–2178

Second-order processes in vision: introduction

Charles Chubb, Lynn Olzak, and Andrew Derrington  »View Author Affiliations

JOSA A, Vol. 18, Issue 9, pp. 2175-2178 (2001)

View Full Text Article

Acrobat PDF (84 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools


No abstract available.

OCIS Codes
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4150) Vision, color, and visual optics : Motion detection
(330.6110) Vision, color, and visual optics : Spatial filtering

Charles Chubb, Lynn Olzak, and Andrew Derrington, "Second-order processes in vision: introduction," J. Opt. Soc. Am. A 18, 2175-2178 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. S. Brindley and W. S. Lewing, “The sensations produced by electrical stimulation of the visual cortex,” J. Physiol. 196, 479–493 (1968).
  2. D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Physiol. 148, 574–591 (1959).
  3. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962).
  4. T. N. Wiesel and D. H. Hubel, “Single-cell responses in striate cortex of kittens deprived of vision in one eye,” J. Neurophysiol. 26, 1002–1017 (1963).
  5. D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).
  6. C. Blakemore and F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation of and size of retinal images,” J. Physiol. 210, 237–260 (1969).
  7. C. Blakemore and P. Sutton, “Size adaptation: a new aftereffect,” Science 166, 245–247 (1969).
  8. C. Blakemore, J. Nachmias, and P. Sutton, “The perceived spatial frequency shift: evidence for frequency-selective neurons in the human brain,” J. Physiol. 210, 727–750 (1969).
  9. A. Pantle and R. W. Sekuler, “Size-detecting mechanisms in human vision,” Science 162, 1146–1148 (1968).
  10. A. S. Gilinsky, “Orientation-specific effects of patterns of adapting light on visual acuity,” J. Opt. Soc. Am. 58, 13–18 (1968).
  11. F. W. Campbell, J. Nachmias, and J. Jukes, “Spatial-frequency discrimination in human vision,” J. Opt. Soc. Am. 60, 555–559 (1970).
  12. M. B. Sachs, J. Nachmias, and J. G. Robson, “Spatial-frequency channels in human vision,” J. Opt. Soc. Am. 61, 1176–1186 (1971).
  13. F. W. Campbell and J. G. Robson, “Applications of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
  14. J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980), pp. 177–214.
  15. B. Julesz, “Visual pattern discrimination,” IRE Trans. Inf. Theory IT-8, 84–92 (1962).
  16. J. Beck, “Effect of orientation and shape similarity in perceptual grouping,” Percept. Psychophys. 1, 300–302 (1966).
  17. B. Julesz, E. N. Gilbert, L. A. Shepp, and H. L. Frisch, “Inability of humans to discriminate between visual textures that agree in second-order statistics—revisited,” Perception 2, 391–405 (1973).
  18. J. Beck, A. Sutter, and R. Ivry, “Spatial frequency channels and perceptual grouping in texture segregation,” Comput. Vision Graph. Image Process. 37, 299–325 (1987).
  19. J. R. Bergen and E. H. Adelson, “Early vision and texture perception,” Nature (London) 333, 363–364 (1988).
  20. J. R. Bergen and M. S. Landy, “Computational modeling of visual texture segregation,” in Computational Models of Visual Processing, M. S. Landy and J. A. Movshon, eds. (MIT Press; Cambridge, Mass., 1991), pp. 253–271.
  21. M. S. Landy and J. K. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
  22. N. Graham, “Non-linearities in texture segregation,” in Higher-Order Processing in the Visual System, G. R. Bock and J. A. Goode, eds. (Wiley, New York, 1994), pp. 309–329.
  23. C. Chubb, J. Econopouly, and M. S. Landy, “Histogram contrast analysis and the visual segregation of IID textures,” J. Opt. Soc. Am. A 11, 2350–2374 (1994).
  24. C. Chubb, “Texture-based methods for analyzing elementary visual substances,” J. Math. Psychol. 43, 539–567 (1999).
  25. C. Chubb and J.-H. Nam, “Variance of high contrast textures is sensed using negative half-wave rectification,” Vision Res. 40, 1677–1694 (2000).
  26. J. Malik and P. Perona, “Preattentive texture discrimination with early vision mechanisms,” J. Opt. Soc. Am. A 7, 923–932 (1990).
  27. T. Caelli, “Three processing characteristics of visual texture segmentation,” Spatial Vision 1, 19–30 (1985).
  28. H. Knutsson and G. H. Granlund, “Texture analysis using two-dimensional quadrature filters,” presented at the IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Image Database Management, Pasadena, Calif., Oct. 12–14, 1983.
  29. J. D. Victor, “Models for preattentive texture discrimination: Fourier analysis and local feature processing in a unified framework,” Spatial Vision 3, 263–280 (1988).
  30. E. Barth, C. Zetzsche, and I. Rentschler, “Intrinsic two-dimensional features as textons,” J. Opt. Soc. Am. A 15, 1723–1732 (1998).
  31. P. de Weerd, J. M. Sprague, E. Vandenbussche, and G. A. Orban, “Two stages in visual texture segregation: a lesion study in the cat,” J. Neurosci. 14, (3, Pt. 1), 929–948 (1994).
  32. H.-C. Nothdurft, “Common properties of visual segmentation,” in Higher-Order Processing in the Visual System, G. R. Bock and J. A. Goode, eds. (Wiley, New York, 1994), pp. 245–268.
  33. T. V. Papathomas, A. Gorea, A. Feher, and T. E. Conway, “Attention-based texture segregation,” Percept. Psychophys. 61, 1399–1410 (1999).
  34. A. Sutter and D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
  35. J. D. Victor and M. Conte, “The role of high-order phase correlations in texture processing,” Vision Res. 36, 1615–1631 (1996).
  36. J. D. Victor, M. M. Conte, K. Purpura, and E. Katz, “Isodipole textures: a window on cortical mechanisms of form processing,” in Early Vision and Beyond, T. V. Papathomas, and all eds., (MIT Press, Cambridge, Mass. 1995), p. 99–107.
  37. J. D. Victor, “Models for preattentive texture discrimination: Fourier analysis and local feature processing in a unified framework,” Spatial Vision 3, 263–280 (1988).
  38. S. S. Wolfson and M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
  39. B. Moulden, “Collator units: second-stage orientational filters,” in Higher-Order Processing in the Visual System, G. R. Bock and J. A. Goode, eds. (Wiley, New York, 1994), p. 170–192.
  40. D. S. Field, A. Hayes, and R. F. Hess, “Contour integration by the human visual system: evidence for a local association field,” Vision Res. 33, 173–193 (1993).
  41. L.-M. Lin and H. R. Wilson, “Fourier and non-Fourier pattern discrimination compared,” Vision Res. 36, 1907–1918 (1996).
  42. A. Sutter, G. Sperling, and C. Chubb, “Measuring the spatial frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
  43. F. A. A. Kingdom, D. Keeble, and B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
  44. R. Rosenholtz, “A simple saliency model predicts a number of motion popout phenomena,” Vision Res. 39, 3157–3163 (1999).
  45. E. S. Olds, W. B. Cowan, and P. Jolicoeur, “Partial orientation pop-out helps difficult search for orientation,” Percept. Psychophys. 62, 1341–1347 (2000).
  46. Z. Li, “Pre-attentive segmentation in the primary visual cortex,” Spatial Vision 13, 25–50 (2000).
  47. L. A. Olzak and J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
  48. L. A. Olzak and T. D. Wickens, “Discrimination of complex patterns: Orientation information is integrated across spatial scale; spatial-frequency and contrast information ar not,” Perception 26, 1101–1120 (1997).
  49. J. P. Thomas and L. A. Olzak, “Uncertainty experiments support the roles of second-order mechanisms in spatial frequency and orientation discriminations,” J. Opt. Soc. Am. A 13, 689–696 (1996).
  50. J. P. Thomas, L. A. Olzak, and S. S. Shimozaki, “The role of Fourier components in discrimination between two types of plaid patterns,” Vision Res. 33, 1573–1579 (1993).
  51. C. Chubb, G. Sperling, and J. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. U.S.A. 86, 9631–9635 (1989).
  52. J. A. Solomon, G. Sperling, and C. Chubb, “The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation,” Vision Res. 33, 2671–2683 (1993).
  53. M. W. Cannon and S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
  54. B. Singer and M. D’Zmura, “Contrast gain control: a bilinear model for chromatic selectivity,” J. Opt. Soc. Am. A 12, 667–685 (1995).
  55. M. W. Cannon and S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
  56. B. Spehar, L. E. Arend, and A. L. Gilchrist, “Contrast contrast: Interactions between spatial and luminance factors.” Rev. Psych. 2, 3–12 (1995).
  57. L. A. Olzak and P. I. Laurinen, “Multiple gain control processes in contrast-contrast phenomena,” Vision Res. 39, 3983–3987 (1999).
  58. E. H. Adelson, “Perceptual organization and the judgment of brightness,” Science 262, 2042–2044 (1993).
  59. B. Blakeslee and M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vision Res. 39, 4361–4377 (1999).
  60. K. R. Gegenfurtner, J. E. Brown, and J. Rieger, “Interpolation processes in the perception of real and illusory contours,” Perception 26, 1445–1458 (1997).
  61. D. L. Ringach and R. Shapley, “Spatial and temporal properties of illusory contours and amodal boundary completion,” Vision Res. 36, 3037–3050 (1996).
  62. G. Francis and S. Grossberg, “Cortical dynamics of form and motion integration: persistence, apparent motion, and illusory contours,” Vision Res. 36, 149–173 (1996).
  63. B. Dresp and C. Bonnet, “Subthreshold summation with illusory contours,” Vision Res. 35, 1071–1078 (1995).
  64. V. S. Ramachandran, M. V. Rao, and T. R. Vidyasagar, “Apparent motion with subjective contours,” Vision Res. 13, 1399–1401 (1973).
  65. A. Pantle and L. Picciano, “A multistable movement display: evidence for two separate motion systems in human vision,” Science 193, 500–502 (1976).
  66. G. Sperling, “Movement perception in computer-driven visual displays,” Behav. Res. Methods Instrum. 8, 144–151 (1976).
  67. C. Chubb and G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
  68. A. M. Lelkens and J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
  69. A. M. Derrington and D. R. Badcock, “Separate detectors for simple and complex grating patterns?” Vision Res. 25, 1869–1878 (1985).
  70. A. M. Derrington and D. R. Badcock, “Detection of spatial beats: Non-linearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
  71. K. Turano and A. Pantle, “On the mechanism that encodes the movement of contrast variations: Velocity discrimination,” Vision Res. 29, 207–221 (1989).
  72. P. Cavanagh and G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
  73. A. Johnston, P. W. McOwan, and H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London 266, 509–518 (1992).
  74. A. Johnston and C. W. G. Clifford, “Perceived motion of contrast modulated gratings: predictions of the multi-channel gradient model and the role of full-wave rectification,” Vision Res. 35, 1771–1783 (1995).
  75. A. Johnston and C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
  76. E. Taub, J. D. Victor, and M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997).
  77. A. Baloch, S. Grossberg, E. Mingolla, and C. A. M. Nogueira, “Neural model of first-order and second-order motion perception and magnocellular dynamics,” J. Opt. Soc. Am. A 16, 953–978 (1999).
  78. C. W. G. Clifford and L. M. Vaina, “A computational model of selective deficits in first and second order motion processing,” Vision Res. 39, 113–130 (1999).
  79. S. J. Cropper and S. T. Hammett, “Adaptation to motion of a second-order pattern: the motion aftereffect is not a general result,” Vision Res. 37, 2247–2259 (1997).
  80. A. M. Derrington and D. R. Badcock, “Two-stage analysis of the motion of 2-dimensional patterns: What is the first stage?” Vision Res. 32, 691–698 (1992).
  81. A. M. Derrington, D. R. Badcock, and G. B. Henning, “Discriminating the direction of second-order motion at short stimulus durations,” Vision Res. 33, 1785–1794 (1993).
  82. A. M. Derrington and O. I. Ukkonen, “Second-order motion discrimination by feature-tracking,” Vision Res. 39, 1465–1475 (1999).
  83. M. Edwards and D. R. Badcock, “Global motion perception: no interaction between the first- and second-order motion pathways,” Vision Res. 35, 2589–2602 (1995).
  84. J. David Fleet and Keith Langley, “Computational analysis of non-Fourier motion,” Vision Res. 34, 3057–3079 (1994).
  85. M. W. Greenlee and A. T. Smith, “Detection and discrimination of first- and second-order motion in patients with unilateral brain damage,” J. Neurosci. 17, 804–818 (1997).
  86. K. R. Gegenfurtner and M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
  87. T. Ledgeway, “Discrimination of the speed and direction of global second-order motion in stochastic displays,” Vision Res. 39, 3710–3720 (1999).
  88. G. Mather and S. Anstis, “Second-order texture contrast resolves ambiguous apparent motion,” Perception 24, 1373–1382 (1995).
  89. G. Mather and L. Murdoch, “Second-order processing of four-stroke apparent motion,” Vision Res. 39, 1795–1802 (1999).
  90. I. Mareschal and C. L. Baker, Jr., “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
  91. S. Nishida, M. Edwards, and T. Sato, “Simultaneous motion contrast across space: involvement of second-order motion?” Vision Res. 37, 199–214 (1997).
  92. L. P. O’Keefe and J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).
  93. J. T. Petersik, “A comparison of varieties of ‘second-order’ motion,” Vision Res. 35, 507–517 (1995).
  94. A. E. Seiffert and P. Cavanagh, “Position displacement, not velocity, is the cue to motion detections of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
  95. A. T. Smith, “Correspondence-based and energy-based detection of second-order motion in human vision,” J. Opt. Soc. Am. A 11, 1940–1948 (1994).
  96. A. T. Smith and T. Ledgeway, “Sensitivity to second-order motion as a function of temporal frequency and eccentricity,” Vision Res. 38, 403–410 (1998).
  97. J. A. Solomon and G. Sperling, “Full-wave and half-wave rectification in second-order motion perception,” Vision Res. 34, 2239–2257 (1994).
  98. L. M. Vaina, A. Cowey, and D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Br. Mapping 7, 67–77 (1999).
  99. J. D. Victor and M. M. Conte, “Motion mechanisms have only limited access to form information,” Vision Res. 30, 289–301 (1990).
  100. P. Werkhoven, G. Sperling, and C. Chubb, “The dimensionality of texture-defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
  101. H. R. Wilson, “The role of second-order motion signals in coherence and transparency,” in Higher-Order Processing in the Visual System, G. R. Bock and J. A. Goode, eds. (Wiley, New York 1994), pp. 227–244.
  102. J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
  103. J. M. Zanker, “Second-order motion perception in the peripheral visual field,” J. Opt. Soc. Am. A 14, 1385–1392 (1997).
  104. Y. Zhou and C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
  105. Z.-L. Lu and G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited