OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 9 — Sep. 1, 2001
  • pp: 2204–2208

Computational modeling of non-Fourier motion: further evidence for a single luminance-based mechanism

Christopher P. Benton, Alan Johnston, Peter W. McOwan, and Jonathan D. Victor  »View Author Affiliations


JOSA A, Vol. 18, Issue 9, pp. 2204-2208 (2001)
http://dx.doi.org/10.1364/JOSAA.18.002204


View Full Text Article

Enhanced HTML    Acrobat PDF (128 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is generally assumed that the perception of non-Fourier motion requires the operation of some nonlinearity before motion analysis. We apply a computational model of biological motion processing to a class of non-Fourier motion stimuli designed to investigate nonlinearity in human visual processing. The model correctly detects direction of motion in these non-Fourier stimuli without recourse to any preprocessing nonlinearity. This demonstrates that the non-Fourier motion in some non-Fourier stimuli is directly available to luminance-based motion mechanisms operating on measurements of local spatial and temporal gradients.

© 2001 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(000.4920) General : Other life sciences

History
Original Manuscript: November 27, 2000
Revised Manuscript: March 5, 2001
Manuscript Accepted: March 5, 2001
Published: September 1, 2001

Citation
Christopher P. Benton, Alan Johnston, Peter W. McOwan, and Jonathan D. Victor, "Computational modeling of non-Fourier motion: further evidence for a single luminance-based mechanism," J. Opt. Soc. Am. A 18, 2204-2208 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-9-2204


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. B. Watson, A. J. Ahumada, A Look at Motion in the Frequency Domain (Ames Research Center, Moffett Field, Calif., 1983).
  2. A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–341 (1985). [CrossRef] [PubMed]
  3. E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985). [CrossRef] [PubMed]
  4. W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the central nervous system,” in Sensory Communication, W. A. Rosenblith, ed. (Wiley, New York, 1961), pp. 303–317.
  5. J. P. H. van Santen, G. Sperling, “Temporal covariance model of human motion perception,” J. Opt. Soc. Am. A 1, 451–473 (1984). [CrossRef] [PubMed]
  6. J. P. H. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985). [CrossRef] [PubMed]
  7. A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992). [CrossRef]
  8. A. Johnston, P. W. McOwan, C. P. Benton, “Robust velocity computation from a biologically motivated model of motion perception,” Proc. R. Soc. London Ser. B 266, 509–518 (1999). [CrossRef]
  9. C. Chubb, G. Sperling, “Drift-balanced random dot stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988). [CrossRef] [PubMed]
  10. C. P. Benton, A. Johnston, “First-order motion from contrast modulated noise?” Vision Res. 37, 3073–3078 (1997). [CrossRef]
  11. E. Taub, J. D. Victor, M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997). [CrossRef] [PubMed]
  12. C. P. Benton, A. Johnston, P. W. McOwan, “Computational modelling of interleaved first-and second-order motion sequences and translating 3f+4f beat patterns,” Vision Res. 40, 1135–1142 (2000). [CrossRef]
  13. C. L. Fennema, W. B. Thompson, “Velocity determination in scenes containing several moving objects,” Comput. Graph. Image Process. 9, 301–315 (1979). [CrossRef]
  14. B. K. P. Horn, B. G. Schunck, “Determining optical flow,” Artif. Intel. 17, 185–203 (1981). [CrossRef]
  15. A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995). [CrossRef] [PubMed]
  16. A. Johnston, C. P. Benton, P. W. McOwan, “Induced motion at texture-define motion boundaries,” Proc. R. Soc. London Ser. B 266, 2441–2459 (1999). [CrossRef]
  17. C. P. Benton, A. Johnston, P. W. McOwan, “Perception of motion direction in luminance- and contrast-defined reversed-phi motion sequences,” Vision Res. 37, 2381–2399 (1997). [CrossRef] [PubMed]
  18. C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. U.S.A. 86, 2985–2989 (1989). [CrossRef] [PubMed]
  19. S. Shioiri, P. Cavanagh, “ISI produces reverse apparent motion,” Vision Res. 30, 757–768 (1990). [CrossRef] [PubMed]
  20. M. A. Georgeson, M. G. Harris, “The temporal range of motion sensing and motion perception,” Vision Res. 30, 615–619 (1990). [CrossRef] [PubMed]
  21. A. Pantle, K. Turano, “Visual resolution of motion ambiguity with periodic luminance- and contrast-domain stimuli,” Vision Res. 32, 2093–2106 (1992). [CrossRef] [PubMed]
  22. S. T. Hammett, T. Ledgeway, A. T. Smith, “Transparent motion from feature- and luminance-based processes,” Vision Res. 33, 1119–1122 (1993). [CrossRef] [PubMed]
  23. T. Ledgeway, A. T. Smith, “Evidence for separate mechanisms for first- and second-order motion in human vision,” Vision Res. 34, 2727–2740 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited