OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 9 — Sep. 1, 2001
  • pp: 2228–2236

Recurrent networks in human visual cortex: psychophysical evidence

Yael Adini and Dov Sagi  »View Author Affiliations


JOSA A, Vol. 18, Issue 9, pp. 2228-2236 (2001)
http://dx.doi.org/10.1364/JOSAA.18.002228


View Full Text Article

Enhanced HTML    Acrobat PDF (800 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To study the neuronal circuitry underlying visual spatial-integration processes, we measured the effect of short and long chains of proximal Gabor-signal (GS) flankers (σ=λ=0.15°) on the contrast-discrimination function of a foveal GS target. We found that the same pattern of lateral masks enhanced target detection with low-contrast pedestals and strongly suppressed the discrimination of a range of intermediate pedestal contrasts (pedestal contrast <30%). Increasing the number of the flankers reversed the suppressive effect. The data suggest that the main influence of the proximal flankers is maintained by activity-dependent interactions and not by linear spatial summation. With an increased number of flankers, we found a nonmonotonic relationship between the discrimination thresholds and the number of flankers, supporting the notion that the discrimination thresholds are mediated by excitatory–inhibitory recurrent networks that manifest the dynamics of large neuronal populations in the neocortex [Proc. Natl. Acad. Sci. USA 94, 10426 (1997)].

© 2001 Optical Society of America

OCIS Codes
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.4060) Vision, color, and visual optics : Vision modeling
(330.6110) Vision, color, and visual optics : Spatial filtering

History
Original Manuscript: November 30, 2000
Revised Manuscript: April 6, 2001
Manuscript Accepted: April 6, 2001
Published: September 1, 2001

Citation
Yael Adini and Dov Sagi, "Recurrent networks in human visual cortex: psychophysical evidence," J. Opt. Soc. Am. A 18, 2228-2236 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-9-2228


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. H. Hubel, T. N. Wiesel, “Shape and arrangement of columns in the cat’s striate cortex,” J. Physiol. (London) 165, 559–568 (1963).
  2. F. Campbell, J. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).
  3. C. Blakemore, F. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).
  4. R. L. DeValois, K. K. DeValois, Spatial Vision (Oxford U. Press, New York, 1990).
  5. Y. Adini, D. Sagi, M. Tsodyks, “Excitatory–inhibitory network in the visual cortex, psychophysical evidence,” Proc. Natl. Acad. Sci. USA 94, 10426–10431 (1997). [CrossRef]
  6. U. Polat, D. Sagi, “Lateral interaction between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993). [CrossRef] [PubMed]
  7. U. Polat, D. Sagi, “The architecture of perceptual spatial interactions,” Vision Res. 34, 73–78 (1994). [CrossRef] [PubMed]
  8. B. Zenger, D. Sagi, “Isolating excitatory and inhibitory non-linear spatial interactions involved in contrast detection,” Vision Res. 36, 2497–2513 (1996). [CrossRef] [PubMed]
  9. J. Solomon, A. Watson, M. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999). [CrossRef] [PubMed]
  10. M. K. Kapadia, M. Ito, D. C. Gilbert, G. Westheimer, “Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys,” Neuron 15, 843–856 (1995). [CrossRef] [PubMed]
  11. B. Dresp, “Dynamic characteristics of spatial mechanisms coding contour structures,” Spatial Vision 12, 129–142 (1999). [CrossRef] [PubMed]
  12. L. Spillmann, A. Ransom-Hogg, R. Oehler, “A comparison of perceptive and receptive fields in man and monkey,” Hum. Neurobiol. 6, 51–62 (1987). [PubMed]
  13. D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. (London) 93, 429–457 (1946).
  14. A. Watson, H. Barlow, J. Robson, “What does the eye see best?” Nature 302, 419–422 (1982). [CrossRef]
  15. J. G. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” J. Opt. Soc. Am. A 2, 1160–1169 (1985). [CrossRef] [PubMed]
  16. U. Polat, C. Tyler, “What pattern the eye sees best,” Vision Res. 39, 887–895 (1999). [CrossRef] [PubMed]
  17. J. Solomon, M. Morgan, “Facilitation from collinear flanks is canceled by noncollinear flanks,” Vision Res. 40, 279–286 (2000). [CrossRef]
  18. C. Yu, D. Levi, “Surround modulation in human vision unmasked by masking experiments,” Nat. Neurosci. 3, 724–728 (2000). [CrossRef] [PubMed]
  19. C. Chen, C. Tyler, “Spatial pattern summation is phase-insensitive in the fovea but not in the perphery,” Spatial Vision 12, 267–285 (1999). [CrossRef]
  20. L. Olzak, J. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999). [CrossRef] [PubMed]
  21. N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) texture channels,” Vision Res. 38, 231–257 (1998). [CrossRef] [PubMed]
  22. N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000). [CrossRef] [PubMed]
  23. J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Proc. R. Soc. London 246, 61–69 (1991). [CrossRef]
  24. J. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994). [CrossRef]
  25. J. Foley, C. Chen, “Analysis of the effect of pattern adaptation on pattern pedestal effects: a two process model,” Vision Res. 37, 2779–2788 (1997). [CrossRef] [PubMed]
  26. D. Heeger, “Normalization of cell in cat striate cortex,” J. Neurosci. 9, 181–197 (1992).
  27. D. J. Heeger, E. P. Simoncelli, J. A. Movshon, “Computational models of cortical visual processing,” Proc. Natl. Acad. Sci. USA 93, 623–627 (1996). [CrossRef] [PubMed]
  28. M. Carandini, D. Heeger, “Summation and division by neurons in primate visual cortex,” Science 264, 1333–1336 (1994). [CrossRef] [PubMed]
  29. D. Somers, E. Todorov, A. Siapas, L. Toth, D. Kim, M. Sur, “A local circuit approach to understanding integration of long-range inputs in primary visual cortex,” Cerebral Cortex 8, 204–217 (1998). [CrossRef] [PubMed]
  30. H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971). [CrossRef]
  31. U. Polat, D. Sagi, “Spatial interactions in human vision: from near to far via experience-dependent cascades of connections,” Proc. Natl. Acad. Sci. USA 91, 1206–1209 (1994). [CrossRef] [PubMed]
  32. U. Polat, A. M. Norcia, “Neurophysiological evidence for contrast dependent long range facilitation and suppression in the human visual cortex,” Vision Res. 36, 2099–2109 (1996). [CrossRef] [PubMed]
  33. Y. Bonneh, D. Sagi, “Configuration saliency revealed in short duration binocular rivalry,” Vision Res. 39, 271–281 (1999). [CrossRef] [PubMed]
  34. C. Williams, R. Hess, “Relationship between facilitation at threshold and suprathreshold contour integration,” J. Opt. Soc. Am. A 15, 2046–2051 (1998). [CrossRef]
  35. E. Freeman, D. Sagi, J. Driver, “Gabor contrast sensitivity depends on task relevance of collinear flankers,” Perception 29 (Suppl.), 62 (2000).
  36. R. Woods, A. Nugent, E. Peli, “Bandwidth affects visual lateral interactions,” Invest. Ophthalmol. Visual Sci. Suppl. 14, S803 (2000).
  37. D. Sagi, B. Julesz, “Short-range limitation on detection of feature differences,” Spatial Vision 2, 39–49 (1987). [CrossRef] [PubMed]
  38. M. Stemmler, M. Usher, E. Niebur, “Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics,” Science 269, 1877–1880 (1995). [CrossRef] [PubMed]
  39. B. Zenger, C. Koch, “Divisive and subtractive mask effects: linking psychophysics and biophysics,” in Advances in Neural Information Processing Systems, T. K. Leen, T. G. Dietterich, V. Tresp, eds. (MIT Press, Cambridge, Mass., 2001), Vol. 13, pp. 915–921.
  40. D. Sagi, S. Hochstein, “Lateral inhibition between spatially adjacent spatial frequency channels?” Percept. Psychophys. 37, 315–322 (1985). [CrossRef] [PubMed]
  41. C. Chubb, G. Sperling, J. Solomon, “Texure interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989). [CrossRef]
  42. M. Cannon, S. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996). [CrossRef] [PubMed]
  43. R. J. Snowden, S. T. Hammett, “The effect of surround contrast on contrast thresholds, perceived contrast and contrast discrimination,” Vision Res. 38, 1935–1945 (1998). [CrossRef] [PubMed]
  44. S. Grossberg, R. Raizada, “Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex,” Vision Res. 40, 1413–1432 (2000). [CrossRef] [PubMed]
  45. M. Sceniak, D. Ringach, M. Hawken, R. Shapley, “Contrast effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999). [CrossRef] [PubMed]
  46. L. J. Toth, S. Rao, D. Kim, D. Somers, M. Sur, “Subthreshold facilitation and suppresion in primary visual cortex revealed by intrinsic signal imaging,” Proc. Natl. Acad. Sci. USA 93, 9869–9874 (1996). [CrossRef]
  47. B. Roig, J. Kabara, R. Snider, A. Bonds, “Non-uniform influence from stimuli outside the classical receptive field on gain control of cat visual cortical neurons,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S2198 (1996).
  48. J. B. Levitt, J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature (London) 387, 73–76 (1997). [CrossRef]
  49. U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998). [CrossRef] [PubMed]
  50. L. Itti, C. Koch, J. Braun, “Revisiting spatial vision: towards a unifying model,” J. Opt. Soc. Am. A 17, 1899–1917 (2000). [CrossRef]
  51. H. B. Barlow, “A theory about the functional role and synaptic mechanism of visual after-effects,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge U. Press, Cambridge, UK, 1990), Chap. 32, pp. 363–375.
  52. F. Sengpiel, R. J. Baddeley, T. Freeman, R. Harrad, C. Blackmore, “Different mechanisms underlie three inhibitory phenomena in cat area 17,” Vision Res. 38, 2067–2080 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited