OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 9 — Sep. 1, 2001
  • pp: 2297–2306

Processing of second-order motion stimuli in primate middle temporal area and medial superior temporal area

Jan Churan and Uwe J. Ilg  »View Author Affiliations

JOSA A, Vol. 18, Issue 9, pp. 2297-2306 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (1860 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two rhesus monkeys were subjects in a direction-discrimination task involving moving stimuli defined by either first- or second-order motion. Two different second-order motion stimuli were used: drift-balanced motion consisting of a rectangular field of stationary dots and theta motion consisting of the same rectangular field with dots moving in the direction opposite to that of the object. The two types of stimuli involved different segmentation cues between the moving object and the background: temporal structure of the luminance (flicker) in the case of drift-balanced motion and opposed motion in the case of the theta-motion stimulus. Our monkeys were able to correctly report the direction of each stimulus. Single-unit recordings from the middle temporal (MT) and medial superior temporal (MST) areas revealed that 16 out of 38 neurons (41%) from area MT and 34 out of 68 neurons (50%) from area MST responded in a directionally selective manner to the drift-balanced stimulus. The movement of an object defined by theta motion is not explicitly encoded in the neuronal activity in areas MT or MST. Our results do not support the hypothesis that the neuronal activity in these areas codes for the direction of stimulus movement independent of specific stimulus parameters. Furthermore, our results emphasize the relevance of different segmentation cues between figure and background. Therefore the notion that there are multiple sites responsible for the processing of second-order motion is strongly supported.

© 2001 Optical Society of America

OCIS Codes
(330.2210) Vision, color, and visual optics : Vision - eye movements
(330.4150) Vision, color, and visual optics : Motion detection
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.5020) Vision, color, and visual optics : Perception psychology
(330.6100) Vision, color, and visual optics : Spatial discrimination
(330.6790) Vision, color, and visual optics : Temporal discrimination

Original Manuscript: December 5, 2000
Revised Manuscript: April 12, 2001
Manuscript Accepted: April 12, 2001
Published: September 1, 2001

Jan Churan and Uwe J. Ilg, "Processing of second-order motion stimuli in primate middle temporal area and medial superior temporal area," J. Opt. Soc. Am. A 18, 2297-2306 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Butzer, U. J. Ilg, J. M. Zanker, “Smooth-pursuit eye movements elicited by first-order and second-order motion,” Exp. Brain Res. 115, 61–70 (1997). [CrossRef] [PubMed]
  2. A. Lindner, J. I. Ilg, “Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000). [CrossRef] [PubMed]
  3. T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision,” Vision Res. 34, 2727–2740 (1994). [CrossRef] [PubMed]
  4. N. E. Scott Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999). [CrossRef]
  5. L. M. Vaina, N. Makris, D. Kennedy, A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998). [CrossRef]
  6. L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Brain Mapp. 7, 67–77 (1999). [CrossRef] [PubMed]
  7. A. T. Smith, M. W. Greenlee, K. D. Singh, F. M. Kraemer, J. Hennig, “The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI),” J. Neurosci. 18, 3816–3830 (1998). [PubMed]
  8. J. T. Petersik, “A comparison of varieties of ‘second-order’ motion,” Vision Res. 35, 507–517 (1995). [CrossRef] [PubMed]
  9. A. Mikami, W. T. Newsome, R. H. Wurtz, “Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT,” J. Neurophysiol. 55, 1308–1327 (1986). [PubMed]
  10. M. J. Hawken, A. J. Parker, J. S. Lund, “Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey,” J. Neurosci. 8, 3541–3548 (1988). [PubMed]
  11. U. J. Ilg, P. Thier, “Inability of rhesus monkey area V1 to discriminate between self-induced and externally induced retinal image slip,” Eur. J. Neurosci. 8, 1156–1166 (1996). [CrossRef] [PubMed]
  12. J. A. Movshon, W. T. Newsome, “Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys,” J. Neurosci. 16, 7733–7741 (1996). [PubMed]
  13. J. M. Allman, J. H. Kaas, “Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus),” Brain Res. 35, 89–106 (1971). [CrossRef] [PubMed]
  14. S. M. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (London) 236, 549–573 (1974).
  15. L. G. Ungerleider, R. Desimone, “Cortical connections of visual area MT in the macaque,” J. Comp. Neurol. 248, 190–222 (1986). [CrossRef] [PubMed]
  16. S. Celebrini, W. T. Newsome, “Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey,” J. Neurosci. 14, 4109–4124 (1994). [PubMed]
  17. A. J. Parker, W. T. Newsome, “Sense and the single neu-ron: probing the physiology of perception,” Annu. Rev. Neurosci. 21, 227–277 (1998). [CrossRef]
  18. J. A. Assad, J. H. Maunsell, “Neuronal correlates of inferred motion in primate posterior parietal cortex,” Nature 373, 518–521 (1995). [CrossRef] [PubMed]
  19. T. D. Albright, “Form-cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992). [CrossRef] [PubMed]
  20. B. J. Geesaman, R. A. Andersen, “The analysis of complex motion patterns by form/cue invariant MSTd neurons,” J. Neurosci. 16, 4716–4732 (1996). [PubMed]
  21. A. Chaudhuri, T. D. Albright, “Neuronal responses to edges defined by luminance vs. temporal texture in macaque area V1,” Visual Neurosci. 14, 949–962 (1998). [CrossRef]
  22. L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).
  23. I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998). [PubMed]
  24. J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992). [PubMed]
  25. A. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984). [CrossRef] [PubMed]
  26. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988). [CrossRef] [PubMed]
  27. J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993). [CrossRef] [PubMed]
  28. J. Churan, J. U. Ilg, “Does the temporal structure of the background affect the perception of first- and second-order motion? A study in human psychophysics and primate single unit recording,” Soc. Neurosci. Abstr. 26, 671 (2000).
  29. W. T. Newsome, R. H. Wurtz, H. Komatsu, “Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs,” J. Neurophysiol. 60, 604–620 (1988). [PubMed]
  30. K. Nakayama, “Biological image motion processing: a review,” Vision Res. 25, 625–660 (1985). [CrossRef] [PubMed]
  31. A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998). [CrossRef]
  32. P. Thier, R. G. Erickson, “Responses of visual-tracking neurons from cortical area MST-I to visual, eye and head motion,” Eur. J. Neurosci. 4, 539–553 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited