OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 1 — Jan. 1, 2002
  • pp: 101–111

Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures

Esteban Moreno, Daniel Erni, Christian Hafner, and Rüdiger Vahldieck  »View Author Affiliations

JOSA A, Vol. 19, Issue 1, pp. 101-111 (2002)

View Full Text Article

Acrobat PDF (1080 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Highly accurate computations of surface plasmons in metallic nanostructures with various geometries are presented. Calculations for cylinders with irregular cross section, coupled structures, and periodic gratings are shown. These systems exhibit a resonant behavior with complex field distribution and strong field enhancement, and therefore their computation requires a very accurate numerical method. It is shown that the multiple multipole (MMP) method, together with an automatic multipole setting (AMS) procedure, is well suited for these computations. An AMS technique for the two-dimensional MMP method is presented. It relies on the global topology of each domain boundary to generate a distribution of numerically independent multipole expansions. This technique greatly facilitates the MMP modeling.

© 2002 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1950) Diffraction and gratings : Diffraction gratings
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles
(350.3950) Other areas of optics : Micro-optics

Esteban Moreno, Daniel Erni, Christian Hafner, and Rüdiger Vahldieck, "Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures," J. Opt. Soc. Am. A 19, 101-111 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  4. The name “plasmon” should not lead one to believe that the theory behind this paper is quantum mechanical. The whole treatment is classical (Maxwell equations, indeed), and the only relevant quantum physics is hidden in the dielectric function ε(ν), which we consider a given function.
  5. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
  6. F. Meriaudeau, T. R. Downey, A. Passian, A. Wig, and T. L. Ferrel, “Environment effects on surface-plasmon spectra in gold-island films potential for sensing applications,” Appl. Opt. 37, 8030–8037 (1998).
  7. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25, 372–374 (2000).
  8. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
  9. S. A. Maier, M. L. Brongersma, and H. A. Atwater, “Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices,” Appl. Phys. Lett. 78, 16–18 (2001).
  10. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356–16359 (2000).
  11. J.-C. Weeber, A. Dereux, Ch. Girard, G. Colas des Francs, J. R. Krenn, and J.-P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E 62, 7381–7388 (2000).
  12. S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063–1065 (1999).
  13. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
  14. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
  15. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express 7, 329–335 (2000).
  16. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
  17. J.-C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
  18. L. Novotny, D. W. Pohl, and P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
  19. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
  20. J.-C. Weeber, Ch. Girard, J. R. Krenn, A. Dereux, and J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).
  21. N. Richard, “Polarization and spectroscopy analysis of the scattering by nanoscopic objects in the near-field optics,” J. Appl. Phys. 88, 2318–2325 (2000).
  22. C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
  23. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
  24. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
  25. H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
  26. M. G. Somekh, S. Liu, T. S. Velinov, and C. W. See, “High-resolution scanning surface-plasmon microscopy,” Appl. Opt. 39, 6279–6287 (2000).
  27. W.-C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177–13182 (2000).
  28. W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).
  29. Ref. 1, Chaps. 5.2–5.4, pp. 136–150.
  30. Ch. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
  31. Th. Wriedt, “A review of elastic light scattering theories,” Part. Part. Syst. Charact. 15, 67–74 (1998).
  32. N. Félidj, J. Aubard, and G. Lévi, “Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
  33. M. Quinten, A. Pack, and R. Wannenmacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).
  34. N. Richard, “Light scattering by supported metallic nanostructures: polarization and spectroscopy in the near-field zone,” Phys. Status Solidi B 220, 1009–1024 (2000).
  35. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and Ch. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
  36. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Opt. Express 6, 213–219 (2000).
  37. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 1–9 (2000).
  38. W.-C. Tan, T. W. Preist, R. J. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).
  39. J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).
  40. Ch. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Boston, 1990).
  41. Ch. Hafner, Post-modern Electromagnetics. Using Intelligent MaXwell Solvers (Wiley, Chichester, UK, 1999).
  42. Th. Wriedt, ed., Generalized Multipole Techniques for Electromagnetic and Light Scattering (Elsevier, Amsterdam, 1999).
  43. Ref. 40, Chap. 7.2, pp. 159–174.
  44. F. G. Bogdanov, D. D. Karkashadze, and R. S. Zaridze, “The method of auxiliary sources in electromagnetic scattering problems,” in Ref. 42, Chaps. 7.2–7.4, pp. 145–154.
  45. Y. Leviatan and A. Boag, “Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model,” IEEE Trans. Antennas Propag. AP-35, 1119–1127 (1987).
  46. S. Eisler and Y. Leviatan, “Analysis of electromagnetic scattering from metallic and penetrable cylinders with edges using a multifilament current model,” IEE Proc. H 136, 431–438 (1989).
  47. K. I. Beshir and J. E. Richie, “On the location and number of expansion centers for the generalized multipole technique,” IEEE Trans. Electromagn. Compat. 38, 177–180 (1996).
  48. P. B. Leuchtmann, “Automatic computation of optimum origins of the poles in the multiple multipole method (MMP-method),” IEEE Trans. Magn. M-19, 2371–2374 (1983).
  49. P. B. Leuchtmann, “Automatisierung der Funktionenwahl bei der MMP-Methode,” Ph.D. dissertation (Eidgenössischen Technischen Hochschule, Zürich, Switzerland, 1987).
  50. P. Regli, “Automatische Wahl der sphärischen Entwicklungsfunktionen für die 3D-MMP Methode,” Ph.D. dissertation (Eidgenössischen Technischen Hochschule, Zürich, Switzerland, 1992).
  51. Ch. Tudziers, “Verbesserung der Anwendbarkeit der Multipolmethode durch automatisches Setzen der Entwicklungsparameter and Parallelisierung,” Ph.D. dissertation (Technischen Universität Hamburg-Harburg, Hamburg, Germany, 1996).
  52. Ref. 40, Chap. 7.4.3, pp. 209–212.
  53. Ref. 41, Chap. 8, pp. 229–234.
  54. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chaps. 16.1–16.2, pp. 739–747.
  55. A. G. Kyurkchan, A. I. Sukov, and A. I. Kleev, “Singularities of wave fields and numerical methods of solving the boundary-value problems for Helmholtz equation,” in Ref. 42, Chaps. 5.2–5.4, pp. 82–102.
  56. R. Zaridze, G. Bit-Babik, K. Tavzarashvili, N. Uzunoglu, and D. Economou, “Some recent developments in method of auxiliary sources for inverse and scattering problems on large and complex structure,” in Electromagnetic and Light Scattering—Theory and Applications, Th. Wriedt and Y. Eremin, eds. (Universität Bremen, Bremen, Germany, 1998), pp. 287–294.
  57. Ref. 40, Chap. 7.2, pp. 169–170.
  58. Ref. 49, Chaps.–, pp. 32–37.
  59. F. G. Bogdanov, D. D. Karkashadze, and R. S. Zaridze, “The method of auxiliary sources in electromagnetic scattering problems,” in Ref. 42, Chap. 7.4.1, pp. 149–151.
  60. Ref. 50, Chap. 3.4.5, pp. 43–45.
  61. Ref. 50, Chap. 2.5, pp. 29–31.
  62. Ref. 40, Chap. 7.2, p. 166.
  63. In the convex side of Γij, we use a larger value of β to obtain a similar number of multipoles at both sides of the interface.
  64. U. Kreibig and C. v. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224, 307–323 (1969).
  65. D. Dalacu and L. Martinu, “Optical properties of discontinuous gold films: finite-size effects,” J. Opt. Soc. Am. B 18, 85–92 (2001).
  66. J. Lermé, “Introduction of quantum finite-size effects in the Mie’s theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters,” Eur. Phys. J. D 10, 265–277 (2000).
  67. Ch. Hafner, MaX-1. A Visual Electromagnetics Platform (Wiley, Chichester, UK, 1998).
  68. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
  69. Ch. Hafner, “Multiple multipole program computation of periodic structures,” J. Opt. Soc. Am. A 12, 1057–1067 (1995).
  70. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited