OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 1 — Jan. 1, 2002
  • pp: 173–184

Decline of photopic multifocal electroretinogram responses with age is due primarily to preretinal optical factors

Brad Fortune and Chris A. Johnson  »View Author Affiliations

JOSA A, Vol. 19, Issue 1, pp. 173-184 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (346 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Age-related changes in photopic retinal function were evaluated topographically with the multifocal electroretinogram (mfERG). Thirty-two subjects between the ages of 16 and 69 participated. There was a strong dependence on age for all mfERG response measures that was strongest for the group of central retinal responses (i.e., within 5 deg eccentricity) and approximately equal for responses between 5 and 20 deg. After adjustment for crystalline lens optical density and pupil diameter, significant effects of age were limited to central first-order (i.e., within 5 deg) and second-order response kernels. Simulation studies support an optical basis for the observed age-related changes. It is concluded that mfERG changes between the ages of 20 and 70 are due predominantly to preretinal optical factors.

© 2002 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7310) Vision, color, and visual optics : Vision

Original Manuscript: February 6, 2001
Revised Manuscript: July 13, 2001
Manuscript Accepted: July 13, 2001
Published: January 1, 2002

Brad Fortune and Chris A. Johnson, "Decline of photopic multifocal electroretinogram responses with age is due primarily to preretinal optical factors," J. Opt. Soc. Am. A 19, 173-184 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Weale, The Senescence of Human Vision (Oxford U. Press, New York, 1992).
  2. C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983). [CrossRef] [PubMed]
  3. K. B. Burton, C. Owsley, M. E. Sloane, “Aging and neural spatial contrast sensitivity: photopic vision,” Vision Res. 33, 10–20 (1993). [CrossRef]
  4. K. E. Higgins, M. J. Jaffe, R. C. Caruso, F. M. deMonasterio, “Spatial contrast sensitivity: effects of age, test–retest, and psychophysical method,” J. Opt. Soc. Am. A 5, 2173–2180 (1988). [CrossRef] [PubMed]
  5. G. Haegerstrom-Portnoy, M. E. Schneck, J. A. Brabyn , “ Seeing into old age: vision function beyond acuity,” Optom. Vision Sci. 76, 141–158 (1999). [CrossRef]
  6. G. S. Rubin, S. K. West, B. Munoz, K. Bandeen-Roche, S. Zeger, O. Schein, L. P. Fried, “A comprehensive assessment of visual impairment in a population of older Americans. The SEE Study. Salisbury Eye Evaluation Project,” Invest. Ophthalmol. Visual Sci. 38, 557–568 (1997).
  7. G. S. Rubin, K. B. Roche, P. Prasada-Rao, L. P. Fried, “Visual impairment and disability in older adults,” Optom. Vision Sci. 71, 750–760 (1994). [CrossRef]
  8. M. A. Johnson, D. Choy, “On the definition of age-related norms for visual function testing,” Appl. Opt. 26, 1449–1454 (1987). [CrossRef] [PubMed]
  9. P. G. D. Spry, C. A. Johnson, “Senescent changes of the normal visual field: an age-old problem,” Optom. Vision Sci. 78, 436–441 (2001). [CrossRef]
  10. C. A. Johnson, A. J. Adams, R. A. Lewis, “Evidence for a neural basis of age-related visual field loss in normal observers,” Invest. Ophthalmol. Visual Sci. 30, 2056–2064 (1989).
  11. C. A. Johnson, D. Marshall, “Aging effects for opponent mechanisms in the central visual field,” Optom. Vision Sci. 72, 75–82 (1995). [CrossRef]
  12. G. J. Jaffe, J. A. Alvarado, R. P. Juster, “Age-related changes of the normal visual field,” Arch. Ophthalmol. (Chicago) 104, 1021–1025 (1986). [CrossRef]
  13. A. Haas, J. Flammer, U. Schneider, “Influence of age on the visual fields of normal subjects,” Am. J. Ophthalmol. 101, 199–203 (1986). [PubMed]
  14. E. J. Casson, C. A. Johnson, J. M. Nelson-Quigg, “Temporal modulation perimetry: the effects of aging and eccentricity on sensitivity in normals,” Invest. Ophthalmol. Visual Sci. 34, 3096–3102 (1993).
  15. A. Heijl, G. Lindgren, J. Olsson, “Normal variability of static perimetric threshold values across the central visual field,” Arch. Ophthalmol. 105, 1544–1549 (1987). [CrossRef] [PubMed]
  16. S. M. Drance, V. Berry, A. Hughes, “Studies on the effects of age on the central and peripheral isopters of the visual field in normal subjects,” Am. J. Ophthalmol. 63, 1667–1672 (1967). [PubMed]
  17. B. J. Lachenmayr, S. Kojetinsky, N. Ostermaier, K. Angstwurm, P. M. Vivell, M. Schaumberger, “The different effects of aging on normal sensitivity in flicker and light-sense perimetry,” Invest. Ophthalmol. Visual Sci. 35, 2741–2748 (1994).
  18. R. Wojciechowski, G. L. Trick, S. B. Steinman, “Topography of the age-related decline in motion sensitivity,” Optom. Vision Sci. 72, 67–74 (1995). [CrossRef]
  19. G. R. Jackson, C. Owsley, E. P. Cordle, C. D. Finley, “Aging and scotopic sensitivity,” Vision Res. 38, 3655–3662 (1998). [CrossRef]
  20. G. R. Jackson, C. Owsley, G. McGwin, “Aging and dark adaptation,” Vision Res. 39, 3975–3982 (1999). [CrossRef]
  21. G. R. Jackson, C. Owsley, “Scotopic sensitivity during adulthood,” Vision Res. 40, 2467–2473 (2000). [CrossRef] [PubMed]
  22. P. D. Spear, “Neural bases of visual deficits during aging,” Vision Res. 33, 2589–2609 (1993). [CrossRef] [PubMed]
  23. R. A. Weale, “Senescent vision: Is it all the fault of the lens?” Eye 1, 217–221 (1987). [CrossRef] [PubMed]
  24. F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959). [CrossRef] [PubMed]
  25. J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987). [CrossRef] [PubMed]
  26. R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. (London) 395, 577–587 (1988).
  27. P. A. Sample, F. D. Esterson, R. N. Weinreb, R. M. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Visual Sci. 29, 1306–1311 (1988).
  28. D. van Nooren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974). [CrossRef]
  29. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulas (Wiley, New York, 1982).
  30. J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, P. T. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990). [CrossRef] [PubMed]
  31. T. J. van den Berg, J. K. Ijspeert, “Light scattering in donor lenses,” Vision Res. 35, 169–177 (1995). [CrossRef] [PubMed]
  32. P. Artal, M. Ferro, I. Miranda, R. J. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993). [CrossRef] [PubMed]
  33. A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).
  34. B. Winn, D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).
  35. C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Visual Sci. 34, 3278–3296 (1993).
  36. C. A. Curcio, D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993). [CrossRef] [PubMed]
  37. C. A. Curcio, C. Owsley, G. R. Jackson, “Spare the rods, save the cones in aging and age-related maculopathy,” Invest. Ophthalmol. Visual Sci. 41, 2015–2018 (2000).
  38. H. Gao, J. G. Hollyfield, “Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells,” Invest. Ophthalmol. Visual Sci. 33, 1–17 (1992).
  39. J. Marshall, “The ageing retina: physiology or pathology,” Eye 1, 282–295 (1987). [CrossRef] [PubMed]
  40. J. B. Jonas, J. A. Muller-Bergh, U. M. Schlotzer-Schrehardt, G. O. Naumann, “Histomorphometry of the human optic nerve,” Invest. Ophthalmol. Visual Sci. 31, 736–744 (1990).
  41. R. G. Weleber, “The effect of age on human cone and rod ganzfeld electroretingrams,” Invest. Ophthalmol. Visual Sci. 20, 392–399 (1981).
  42. D. G. Birch, J. L. Anderson, “Standardized full-field electroretinography. Normal values and their variation with age,” Arch. Ophthalmol. 110, 1571–1576 (1992). [CrossRef] [PubMed]
  43. C. E. Wright, D. E. Williams, N. Drasdo, G. F. Harding, “The influence of age on the electroretinogram and visual evoked potential,” Doc. Ophthalmol. 59, 365–384 (1985). [CrossRef] [PubMed]
  44. G. L. Trick, L. R. Trick, K. M. Haywood, “Altered pattern evoked retinal and cortical potentials associated with human senescence,” Curr. Eye Res. 5, 717–724 (1986). [CrossRef] [PubMed]
  45. G. L. Trick, R. Nesher, D. G. Cooper, S. M. Shields , “The human pattern ERG: alteration of response properties with aging,” Optom. Vision Sci. 69, 122–128 (1992). [CrossRef]
  46. G. G. Celesia, D. Kaufman, S. Cone, “Effects of age and sex on pattern electroretinograms and visual evoked potentials,” Electroencephalogr. Clin. Neurophysiol. 68, 161–171 (1987). [CrossRef] [PubMed]
  47. G. L. Martinsen, W. A. Verdon, G. Haegerstrom-Portnoy, “The multifocal ERG in age-related maculopathy,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S714 (1999).
  48. K. Anzai, K. Mori, K. Murayama, S. Yoneya, “Normal values and their variation with age in multifocal electroretinograms,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S881 (1997).
  49. N. Mohidin, M. K. H. Yap, R. J. Jacobs, “Influence of age on multifocal electroretinography,” Ophthalmic Physiol. Opt. 19, 481–488 (1999). [CrossRef]
  50. A. M. Palmowski, M. A. Bearse, E. E. Sutter, “Variability and replicability of the ERG topography in normals,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S877 (1997).
  51. J. G. Robson, L. J. Frishman, “Dissecting the dark-adapted electroretinogram,” Doc. Ophthalmol. 95, 187–215 (1999). [CrossRef] [PubMed]
  52. X. Xu, C. J. Karwoski, “Current source density analysis of retinal field potentials II. Pharmacological analysis of the b-wave and m-wave,” J. Neurophysiol. 72, 96–105 (1994). [PubMed]
  53. X. Xu, C. J. Karwoski, “Current source density analysis of the electroretinographic d-wave of frog retina,” J. Neurophysiol. 73, 2459–2469 (1995). [PubMed]
  54. R. A. Bush, P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Invest. Ophthalmol. Visual Sci. 35, 635–645 (1994).
  55. R. A. Bush, P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996). [CrossRef]
  56. P. A. Sieving, K. Murayama, F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Visual Neurosci. 11, 519–532 (1994). [CrossRef]
  57. M. E. Breton, A. W. Schueller, T. D. Lamb, E. N. Pugh, “Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction,” Invest. Ophthalmol. Visual Sci. 35, 295–309 (1994).
  58. D. C. Hood, D. G. Birch, “Light adaptation of human rod receptors: the leading edge of the human a-wave and models of rod receptor activity,” Vision Res. 33, 1605–1618 (1993). [CrossRef] [PubMed]
  59. D. C. Hood, D. G. Birch, “Human cone receptor activity: the leading edge of the a-wave and models of receptor activity,” Visual Neurosci. 10, 857–871 (1993). [CrossRef]
  60. A. V. Cideciyan, S. G. Jacobson, “An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age,” Vision Res. 36, 2609–2621 (1996). [CrossRef] [PubMed]
  61. D. R. Pepperberg, D. G. Birch, D. C. Hood, “Photoresponses of human rods in vivo derived from pairedflash electroretinograms,” Visual Neurossci. 14, 73–82 (1997). [CrossRef]
  62. C. J. Dong, W. A. Hare, “Contribution to the kinetics and amplitude of the electroretinogram b-wave by third-order retinal neurons in the rabbit retina,” Vision Res. 40, 579–589 (2000). [CrossRef] [PubMed]
  63. L. Maffei, A. Fiorentini, “Electroretinographic responses to alternating gratings before and after section of the optic nerve,” Science 211, 953–955 (1981). [CrossRef]
  64. L. Maffei, A. Fiorentini, S. Bisti, H. Hollander, “Pattern ERG in the monkey after section of the optic nerve,” Exp. Brain Res. 59, 423–425 (1985). [CrossRef] [PubMed]
  65. D. C. Hood, L. J. Frishman, S. Viswanathan, J. G. Robson, J. Ahmed, “Evidence for a ganglion cell contribution to the primate electroretinogram (ERG): effects of TTX on the multifocal ERG in macaque,” Visual Neurosci. 16, 411–416 (1999). [CrossRef]
  66. D. C. Hood, M. A. Bearse, E. E. Sutter, S. Viswanathan, L. J. Frishman, “The optic nerve head component of the monkey’s (Macaca mulatta) multifocal electroretinogram (mERG),” Vision Res. 41, 2029–2041 (2000). [CrossRef]
  67. W. A. Hare, H. Ton, “Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey,” Doc. Ophthalmol. (to be published).
  68. R. P. Gallemore, B. A. Hughes, S. S. Miller, “Retinal pigment epithelial transport mechanisms and their contribution to the electroretinogram,” Prog. Retinal Res. 16, 509–566 (1997). [CrossRef]
  69. E. E. Sutter, “The fast m-transform: fast computation of cross-correlations with binary m-sequences,” SIAM J. Comput. 20, 686–694 (1991). [CrossRef]
  70. E. E. Sutter, D. Tran, “The field topography of ERG components in man—I: the photopic luminance response,” Vision Res. 32, 433–446 (1992). [CrossRef] [PubMed]
  71. M. A. Bearse, E. E. Sutter, “Imaging localized retinal dysfunction with the multifocal electroretinogram,” J. Opt. Soc. Am. A 13, 634–640 (1996). [CrossRef]
  72. E. E. Sutter, M. A. Bearse, “The optic nerve head component of the human ERG” Vision Res. 39, 419–436 (1999). [CrossRef] [PubMed]
  73. M. A. Bearse, E. E. Sutter, “Contrast dependence of multifocal ERG components,” Vision Science and Its Applications, Vol. 1 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 24–27.
  74. D. C. Hood, “Assessing retinal function with the multifocal technique,” Prog. Retinal Res. 19, 607–646 (2000). [CrossRef]
  75. D. C. Hood, W. Seiple, K. Holopigian, V. Greenstein, “A comparison of the components of the multifocal and full-field ERGs,” Visual Neurosci. 14, 533–544 (1997). [CrossRef]
  76. D. C. Hood, J. Li, “A technique for measuring individual multifocal ERG records.” In: D. Yager (ed.), in Noninvasive Assessment of the Visual System, Vol. 11 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 33–41.
  77. G. L. Savage, C. A. Johnson, D. L. Howard, “A comparison of non-invasive objective and subjective measurements of the optical density of human ocular media,” Optom. Vision Sci. 78, 386–395 (2001). [CrossRef]
  78. M. E. Schneck, A. J. Adams, K. Huie, E. J. Lee, “A filter for simulating color and spatial vision of the elderly,” in Color Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 357–364.
  79. B. Brown, M. K. H. Yap, “Contrast and luminance as parameters defining the output of the VERIS topographical ERG,” Ophthalmic Physiol. Opt. 16, 42–48 (1996). [CrossRef] [PubMed]
  80. G. L. Martinsen, “The multifocal electroretinogram in aging and age-related macular degeneration,” Ph.D. dissertation (University of California, Berkeley, Calif., 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited