OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 1 — Jan. 1, 2002
  • pp: 91–100

Quantum-limited optical phase detection at the 10-10-rad level

Brian Lantz, Peter Fritschel, Haisheng Rong, Ed Daw, and Gabriela González  »View Author Affiliations


JOSA A, Vol. 19, Issue 1, pp. 91-100 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000091


View Full Text Article

Acrobat PDF (578 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Interferometric detection of gravitational waves at a level of astrophysical interest is expected to require measurement of optical phase differences of ≤10−10 rad. A fundamental limit to the phase sensing is the statistics of photon detection—Poisson statistics for light in a coherent state. We have built a laboratory-scale interferometer to achieve and investigate the phase detection sensitivity required for the Laser Interferometer Gravitational-Wave Observatory. With 70 W of circulating power, we have obtained a phase sensitivity of 1.28×10−10 rad/√Hz at frequencies above 600 Hz, limited by quantum noise. Below 600 Hz, excess noise above the quantum limit is seen, and we present our investigations into the sources of this excess. Compared with the results of previous such experiments, the phase sensitivity over the full 100-Hz–10-kHz band of interest has been improved by factors of up to 100, with a factor-of-2.5 improvement in the quantum-limited level.

© 2002 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(270.5290) Quantum optics : Photon statistics

Citation
Brian Lantz, Peter Fritschel, Haisheng Rong, Ed Daw, and Gabriela González, "Quantum-limited optical phase detection at the 10-10-rad level," J. Opt. Soc. Am. A 19, 91-100 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-1-91


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Weiss, “Electromagnetically coupled broadband gravitational antenna,” MIT Res. Lab. Electron. Q. Prog. Rep. 105, 54–76 (1972).
  2. See, for example, K. S. Thorne, “Gravitational radiation,” in 300 Years of Gravitation, S. W. Hawking and W. Israel, eds. (Cambridge U. Press, Cambridge, UK, 1987), pp. 330–458.
  3. Ke-Xun Sun, M. M. Fejer, E. Gustafson, and R. L. Byer, “Sagnac interferometer for gravitational-wave detection,” Phys. Rev. Lett. 76, 3053–3056 (1996).
  4. A. Abramovici, B. Althouse, R. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
  5. B. Caron, A. Dominjon, C. Drezen, R. Flaminio, X. Grave, F. Marion, L. Massonnet, C. Mehmel, R. Morand, B. Mours, V. Sannibale, M. Yvert, D. Babusci, S. Bellucci, S. Candusso, G. Giordano, G. Matone, J.-M. Mackowski, L. Pinard, F. Barone, E. Calloni, L. DiFiore, M. Flagiello, F. Garuti, A. Grado, M. Longo, M. Lops, S. Marano, L. Milano, S. Solimeno, V. Brisson, F. Cavalier, M. Davier, P. Hello, P. Heusse, P. Mann, Y. Acker, M. Barsuglia, B. Bhawal, F. Bondu, A. Brillet, H. Heitmann, J.-M. Innocent, L. Latrach, C. N. Man, M. PhamTu, E. Tournier, M. Taubmann, J.-Y. Vinet, C. Boccara, P. Gleyzes, V. Loriette, J.-P. Roger, G. Cagnoli, L. Gammaitoni, J. Kovalik, F. Marchesoni, M. Punturo, M. Beccaria, M. Bernardini, E. Bougleux, S. Braccini, C. Bradaschia, G. Cella, A. Ciampa, E. Cuoco, G. Curci, R. DelFabbro, R. DeSalvo, A. DiVirgilio, D. Enard, I. Ferrante, F. Fidecaro, A. Giassi, A. Giazotto, L. Holloway, P. LaPenna, G. Losurdo, S. Mancini, M. Mazzoni, F. Palla, H.-B. Pan, D. Passuello, P. Pelfer, R. Poggiani, R. Stanga, A. Vicere, Z. Zhang, V. Ferrari, E. Majorana, P. Puppo, P. Rapagnani, and F. Ricci, “The VIRGO interferometer for gravitational wave detection,” Nucl. Phys. B 54, 167–175 (1997).
  6. K. Danzmann, “GEO 600—a 600-m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizella, and F. Ronga, eds. (World Scientific, Singapore, 1995), pp. 100–111.
  7. K. Tsubono, “300-m laser interferometer gravitational wave detector (TAMA300) in Japan,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizella, and F. Ronga, eds. (World Scientific, Singapore, 1995), pp. 112–114.
  8. P. Fritschel, G. González, B. Lantz, P. Saha, and M. Zucker, “High power interferometric phase measurement limited by quantum noise and application to detection of gravitational waves,” Phys. Rev. Lett. 80, 3181–3184 (1998).
  9. D. Shoemaker, R. Schilling, L. Schnupp, W. Winkler, K. Maischberger, and A. Rüdiger, “Noise behavior of the Garching 30-meter prototype gravitational-wave detector,” Phys. Rev. D 38, 423–432 (1988).
  10. R. Forward, “Wideband laser-interferometer gravitational-radiation experiment,” Phys. Rev. D 17, 379–390 (1978).
  11. G. Blum and R. Weiss, “Experimental test of the Freundlich red-shift hypothesis,” Phys. Rev. 155, 1412–1413 (1967).
  12. A. Abramovici, W. Althouse, J. Camp, J. A. Giaime, A. Gillespie, S. Kawamura, A. Kuhnert, T. Lyons, F. J. Raab, R. L. Savage, Jr., D. Shoemaker, L. Sievers, R. Spero, R. Vogt, R. Weiss, S. Whitcomb, and M. Zucker, “Improved sensitivity in a gravitational wave interferometer and implications for LIGO,” Phys. Lett. A 218, 157–163 (1996).
  13. R. W. P. Drever, J. Hough, A. J. Munley, S. A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook III, and Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities,” in Quantum Optics, Experimental Gravity, and Measurement Theory, P. Meystre and M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–524.
  14. H. Billing, K. Maischberger, A. Rüdiger, R. Schilling, L. Schnupp, and W. Winkler, “The Munich Gravitational Wave Detector using laser interferometry,” in Quantum Optics, Experimental Gravity, and Measurement Theory, P. Meystre and M. O. Scully, eds. (Plenum, New York, 1983), pp. 525–566.
  15. K. Maischberger, A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, and G. Leuchs, “Status of the Garching 30 meter prototype for a large gravitational wave detector,” in International Symposium on Experimental Gravitational Physics, P. Michelson, Hu En-ke, and G. Pizzella, eds. (World Scientific, Singapore, 1988), pp. 316–321.
  16. L. Schnupp, Max Planck Institute for Quantum Optics, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany (personal communication, 1986).
  17. J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, and R. Schilling, “The stabilisation of lasers for interferometric gravitational wave detectors,” in The Detection of Gravitational Waves, D. Blair, ed. (Cambridge U. Press, Cambridge, UK, 1991), pp. 329–352.
  18. R. L. Savage, Jr., P. J. King, and S. U. Seel, “A highly stabilized 10-watt Nd:YAG laser for the Laser Interferometer Gravitational Wave Observatory (LIGO),” Laser Phys. 8, 679–685 (1998).
  19. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
  20. STACIS, Technical Manufacturing Company, 15 Centennial Drive, Peabody, Mass. 01960.
  21. J. Giaime, P. Saha, D. Shoemaker, and L. Sievers, “A passive vibration isolation stack for LIGO: design, modeling, and testing,” Rev. Sci. Instrum. 67, 208–214 (1996).
  22. R. Schilling, L. Schnupp, W. Winkler, H. Billing, K. Maischberger, and A. Rüdiger, “A method to blot out scattered light effects and its application to a gravitational wave detector,” J. Phys. E 14, 65–70 (1981).
  23. The photodiode is 2-mm-diameter InGaAs, model C30642G from EG&G Optoelectronics, operated without the protec-tive window. The beam impinges on the diode at a 30° angle of incidence to control the specular reflection; at this angle, we have measured its backscattering to be 3.7× 10−5 /sr.
  24. E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward, “Automatic alignment of optical interferometers,” Appl. Opt. 33, 5041–5049 (1994).
  25. Y. Hefetz, N. Mavalvala, and D. Sigg, “Principles of calculating alignment signals in complex resonant optical interferometers,” J. Opt. Soc. Am. B 14, 1597–1605 (1997).
  26. B. Lantz, “Quantum limited optical phase detection in a high power suspended interferometer,” Ph.D. thesis (Massachusetts Institute of Technology, Cambridge, Mass., 1999).
  27. T. M. Neibauer, R. Schilling, K. Danzmann, A. Rüdiger, and W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
  28. P. Saha, “Noise analysis of a suspended high power Michelson interferometer,” Ph.D. thesis (Massachusetts Institute of Technology, Cambridge, Mass., 1997).
  29. A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, and K. Maischberger, “A mode selector to suppress fluctuations in laser beam geometry,” Opt. Acta 28, 641–658 (1981).
  30. Yu. Levin, “Internal thermal noise in the LIGO test masses: a direct approach,” Phys. Rev. D 57, 659–663 (1998).
  31. W. J. Startin, M. A. Bielby, and P. R. Saulson, “Mechanical quality factors of fused silica resonators,” Rev. Sci. Instrum. 69, 3681–3689 (1998).
  32. B. S. Lunin, S. N. Torbin, M. N. Danachevskaya, and I. V. Batov, “Effect of defect layer on Q-factor of quartz glass resonators,” Bull. Moscow State Univ. Ser. 2 35, 24–28 (1994) (translated by D. D. Lynch).
  33. S. Rowan, S. M. Twyford, J. Hough, D. Gwo, and R. Route, “Mechanical losses associated with the technique of hydroxide-catalysis bonding of fused silica,” Phys. Lett. A 246, 471–478 (1998).
  34. P. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D 42, 2437–2445 (1990).
  35. W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detectors,” Phys. Rev. A 44, 7022–7036 (1991).
  36. The mirror surface distortions and the beam-splitter substrate inhomogeneities contributed insignificantly to the contrast loss; this was clear not only because the calculated asymmetry loss matched the measured loss but also because the spatial distribution of the antisymmetric port beam had the cylindrical symmetry expected for this effect.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited