OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 10 — Oct. 1, 2002
  • pp: 2030–2035

Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on rigorous electromagnetic theory

Jia-Sheng Ye, Bi-Zhen Dong, Ben-Yuan Gu, Guo-Zhen Yang, and Shu-Tian Liu  »View Author Affiliations


JOSA A, Vol. 19, Issue 10, pp. 2030-2035 (2002)
http://dx.doi.org/10.1364/JOSAA.19.002030


View Full Text Article

Enhanced HTML    Acrobat PDF (274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We find that a microcylindrical axilens with a closed boundary and with an f-number less than 1 still can achieve the properties of long focal depth and high transverse resolution, unlike a microcylindrical axilens with an open boundary, which fails to maintain those properties for low f-numbers. The focusing characteristics of the closed-boundary axilens and the open-boundary axilens are numerically investigated based on the boundary integral method. The numerical results show that the ratio of the extended focal depth of the closed-boundary axilens to the focal depth of the conventional microlens can reach up to 1.26 and 2.12 for the preset focal depths 3 and 5 µm, respectively, even though the f-number is reduced to 1/3.

© 2002 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1970) Diffraction and gratings : Diffractive optics
(220.0220) Optical design and fabrication : Optical design and fabrication

History
Original Manuscript: February 15, 2002
Revised Manuscript: May 15, 2002
Manuscript Accepted: May 20, 2002
Published: October 1, 2002

Citation
Jia-Sheng Ye, Bi-Zhen Dong, Ben-Yuan Gu, Guo-Zhen Yang, and Shu-Tian Liu, "Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on rigorous electromagnetic theory," J. Opt. Soc. Am. A 19, 2030-2035 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-10-2030


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Davidson, A. A. Friesem, E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991). [CrossRef] [PubMed]
  2. J. Sochacki, S. Bará, Z. Jaroszewicz, A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17, 7–9 (1992). [CrossRef] [PubMed]
  3. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31, 5326–5340 (1992). [CrossRef] [PubMed]
  4. L. R. Staroński, J. Sochacki, Z. Jaroszewicz, A. Kołodziejczyk, “Lateral distribution and flow of energy in uniform-intensity axicons,” J. Opt. Soc. Am. A 9, 2091–2094 (1992). [CrossRef]
  5. J. Sochacki, Z. Jaroszewicz, L. R. Staroński, A. Kołodziejczyk, “Annular-aperture logarithmic axicon,” J. Opt. Soc. Am. A 10, 1765–1768 (1993). [CrossRef]
  6. Z. Jaroszewicz, J. Sochacki, A. Kołodziejczyk, L. R. Staroński, “Apodized annular-aperture logarithmic axicon: smoothness and uniformity of intensity distributions,” Opt. Lett. 18, 1893–1895 (1993). [CrossRef] [PubMed]
  7. B.-Z. Dong, G.-Z. Yang, B.-Y. Gu, O. K. Ersoy, “Iterative optimization approach for designing an axicon with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 13, 97–103 (1996). [CrossRef]
  8. R. Kant, “Superresolution and increased depth of focus: an inverse problem of vector diffraction,” J. Mod. Opt. 47, 905–916 (2000). [CrossRef]
  9. B.-Z. Dong, J. Liu, B.-Y. Gu, G.-Z. Yang, J. Wang, “Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 18, 1465–1470 (2001). [CrossRef]
  10. D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
  11. K. Yashiro, S. Ohkawa, “Boundary element method for electromagnetic field problems,” IEEE Trans. Antennas Propag. AP-33, 383–389 (1985). [CrossRef]
  12. K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996). [CrossRef]
  13. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998). [CrossRef]
  14. K. Hirayama, K. Igarashi, Y. Hayashi, E. N. Glytsis, T. K. Gaylord, “Finite-substrate-thickness cylindrical diffractive lenses: exact and approximate boundary-element methods,” J. Opt. Soc. Am. A 16, 1294–1302 (1999). [CrossRef]
  15. E. N. Glytsis, M. E. Harrigan, T. K. Gaylord, K. Hirayama, “Effects of fabrication errors on the performance of cylindrical diffractive lenses: rigorous boundary-element method and scalar approximation,” Appl. Opt. 37, 6591–6602 (1998). [CrossRef]
  16. E. N. Glytsis, M. E. Harrigan, K. Hirayama, T. K. Gaylord, “Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation,” Appl. Opt. 37, 34–43 (1998). [CrossRef]
  17. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, Berlin, 1968), Chap. 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited