OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 10 — Oct. 1, 2002
  • pp: 2036–2042

Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams in dispersive and absorbing media

Yangjian Cai, Qiang Lin, and Di Ge  »View Author Affiliations


JOSA A, Vol. 19, Issue 10, pp. 2036-2042 (2002)
http://dx.doi.org/10.1364/JOSAA.19.002036


View Full Text Article

Enhanced HTML    Acrobat PDF (166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By adopting a new tensor method, we derived an analytical propagation formula for the cross-spectral density of partially coherent twisted anisotropic Gaussian Schell-model (GSM) beams through dispersive and absorbing media. Using the derived formula, we studied the evolution properties and spectrum properties of twisted anisotropic GSM beams in dispersive and absorbing media. The results show that the dispersive and absorbing media have strong influences on the propagation properties of twisted anisotropic GSM beams and their spectrum evolution. Our method provides a simple and convenient way to study the propagation of twisted anisotropic GSM beams in media with complex refractive index.

© 2002 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.1670) Coherence and statistical optics : Coherent optical effects
(080.2730) Geometric optics : Matrix methods in paraxial optics

History
Original Manuscript: February 15, 2002
Revised Manuscript: May 7, 2002
Manuscript Accepted: May 30, 2002
Published: October 1, 2002

Citation
Yangjian Cai, Qiang Lin, and Di Ge, "Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams in dispersive and absorbing media," J. Opt. Soc. Am. A 19, 2036-2042 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-10-2036


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Simon, E. C. G. Sudarshan, N. Mukunda, “Anisotropic Gaussian Schell-model beams: passage through optical systems and associated invariants,” Phys. Rev. A 31, 2419–2434 (1985). [CrossRef] [PubMed]
  2. R. Simon, N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10, 95–109 (1993). [CrossRef]
  3. R. Simon, N. Mukunda, “Twisted phase in Gaussian-beam optics,” J. Opt. Soc. Am. A 15, 2373–2382 (1998). [CrossRef]
  4. R. Simon, N. Mukunda, “Gaussian Schell-model beams and general shape invariant,” J. Opt. Soc. Am. A 16, 2465–2475 (1999). [CrossRef]
  5. R. Simon, N. Mukunda, “Optical phase space, Wigner representation, and invariant quality parameters,” J. Opt. Soc. Am. A 17, 2440–2463 (2000). [CrossRef]
  6. D. Ambrosini, V. Bagini, F. Gori, M. Santarsiero, “Twisted Gaussian Schell-model beams: a superposition model,” J. Mod. Opt. 41, 1391–1399 (1994). [CrossRef]
  7. R. Simon, N. Mukunda, “Iwasawa decomposition in first-order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams,” J. Opt. Soc. Am. A 15, 2146–2155 (1998). [CrossRef]
  8. A. T. Friberg, E. Tervonen, J. Turunen, “Interpretation and experimental decomposition of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818–1826 (1994). [CrossRef]
  9. G. Ding, X. Yuan, B. Lu, “Propagation characteristics of the ten-parameter family of partially coherent general anisotropic Gaussian Schell-model (AGSM) beams passing through first-order optical systems,” J. Mod. Opt. 47, 1483–1499 (2000).
  10. G. Ding, X. Yuan, B. Lu, “Propagation of twisted Gauss-ian Schell-model beams through a misaligned first-order optical system,” J. Mod. Opt. 48, 1617–1621 (2001). [CrossRef]
  11. Q. Lin, Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams,” Opt. Lett. 27, 216–218 (2002). [CrossRef]
  12. H. Kogelnik, “On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation,” Appl. Opt. 4, 1562–1569 (1965). [CrossRef]
  13. M. Nazarathy, A. Hardy, J. Shamir, “Generalized mode propagation in first-order optical systems with loss or gain,” J. Opt. Soc. Am. 72, 1409–1419 (1982). [CrossRef]
  14. G. P. Agrawal, “Wolf effect in homogeneous and inhomogeneous media,” J. Opt. Soc. Am. A 7, 2184–2192 (1990). [CrossRef]
  15. W. Wang, E. Wolf, “Propagation of Gaussian Schell-model beams in dispersive and absorbing media,” J. Mod. Opt. 39, 2007–2021 (1992). [CrossRef]
  16. W. Wang, E. Wolf, “Invariance properties of random pulses and of other random fields in dispersive media,” Phys. Rev. E 52, 5532–5539 (1995). [CrossRef]
  17. C. Palma, P. D. Santis, C. Cincotti, G. Guattari, “Propagation of partially coherent beams in absorbing media,” J. Mod. Opt. 42, 1123–1135 (1995). [CrossRef]
  18. S. B. Cavalcanti, “Noise amplification in dispersive nonlinear media,” Phys. Rev. A 51, 4086–4092 (1995). [CrossRef] [PubMed]
  19. V. P. Nayyar, “Propagation of partially coherent Gaussian Schell-model sources in nonlinear media,” J. Opt. Soc. Am. B 14, 2248–2253 (1997). [CrossRef]
  20. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [CrossRef]
  21. Q. Lin, S. Wang, J. Alda, E. Bernabeu, “Transformation of non-symmetric gaussian beam into symmetric one by means of tensor ABCD law,” Optik (Stuttgart) 85, 67–72 (1990).
  22. J. Alda, S. Wang, E. Bernabeu, “Analytical expression for the complex radius of curvature tensor Q for generalized gaussian beams,” Opt. Commun. 80, 350–352 (1990). [CrossRef]
  23. Q. Lin, L. Wang, “Collins formula and tensor ABCD law in spatial-frequency domain,” Opt. Commun. 185, 263–269 (2000). [CrossRef]
  24. E. Wolf, “Invariance of spectrum on propagation,” Phys. Rev. Lett. 56, 1370–1372 (1986). [CrossRef] [PubMed]
  25. E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature 326, 363–365 (1987). [CrossRef]
  26. G. M. Morris, D. Faklis, “Effects of source correlation on the spectrum light,” Opt. Commun. 62, 5–11 (1987). [CrossRef]
  27. Z. Dacic, E. Wolf, “Changes in the spectrum of partially coherent light beam propagating in free space,” J. Opt. Soc. Am. A 5, 1118–1126 (1988). [CrossRef]
  28. F. Gori, G. L. Marcopoli, M. Santarsiero, “Spectrum invariance on paraxial propagation,” Opt. Commun. 81, 123–130 (1991). [CrossRef]
  29. M. Santarsiero, F. Gori, “Spectral changes in a Young interference pattern,” Phys. Lett. A 167, 123–128 (1992). [CrossRef]
  30. H. C. Kandpal, J. S. Vaishya, K. C. Joshi, “Wolf shift and its application in spectroradiometry,” Opt. Commun. 73, 169–172 (1989). [CrossRef]
  31. H. C. Kandpal, J. S. Vaishya, K. Saxena, D. S. Mehta, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995). [CrossRef]
  32. F. Gori, G. Guattari, C. Palma, “Observation of optical redshifts and blueshifts produced by source correlation,” Opt. Acta 30, 1075–1097 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited