OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 10 — Oct. 1, 2002
  • pp: 2064–2073

Inverse scattering with a wave-front-matching algorithm

Demetrio Macías, Eugenio R. Méndez, and Víctor Ruiz-Cortés  »View Author Affiliations


JOSA A, Vol. 19, Issue 10, pp. 2064-2073 (2002)
http://dx.doi.org/10.1364/JOSAA.19.002064


View Full Text Article

Acrobat PDF (1351 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and study a numerical procedure for the reconstruction of surface profiles from far-field scattering data. The algorithm, based on wave-front-matching principles, is used to reconstruct one-dimensional surface profiles from amplitude scattering data calculated by using rigorous techniques. The study is complemented by the development of a sampling strategy and considerations of the tolerance of the algorithm to noise in the data.

© 2002 Optical Society of America

OCIS Codes
(290.3200) Scattering : Inverse scattering
(290.5880) Scattering : Scattering, rough surfaces

Citation
Demetrio Macías, Eugenio R. Méndez, and Víctor Ruiz-Cortés, "Inverse scattering with a wave-front-matching algorithm," J. Opt. Soc. Am. A 19, 2064-2073 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-10-2064


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. A. DeSanto and G. Brown, “Analytical techniques for multiple scattering,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1986), Vol. 23, pp. 2–62.
  2. G. Voronovich, Wave Scattering from Rough Surfaces (Springer-Verlag, Berlin, 1994).
  3. K. F. Warnick and W. C. Chew, “Numerical simulation methods for rough surface scattering,” Waves Random Media 11, R1–R30 (2001).
  4. M. Saillard and A. Sentenac, “Rigorous solutions for electromagnetic scattering from rough surfaces,” Waves Random Media 11, R103–R137 (2001).
  5. S. O. Rice, “Reflection of electromagnetic waves from slightly rough surfaces,” Commun. Pure Appl. Math. 4, 351–378 (1951).
  6. J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces (Hilger, Bristol, UK, 1991).
  7. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon, London, 1963), p. 29.
  8. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255–307 (1990).
  9. A. Mendoza-Suárez and E. R. Méndez, “Light scattering by reentrant fractal surfaces,” Appl. Opt. 36, 3521–3531 (1997).
  10. A. R. McGurn, A. A. Maradudin, and V. Celli, “Localization effects in the scattering of light from a randomly rough grating,” Phys. Rev. B 31, 4866–4871 (1985).
  11. E. R. Méndez and K. A. O’Donnell, “Observation of depolarization and backscattering enhancement in light scattering from Gaussian random surfaces,” Opt. Commun. 61, 61–95 (1987).
  12. P. Tran and A. A. Maradudin, “The scattering of electromagnetic waves from a randomly rough 2-D metallic surface,” Opt. Commun. 110, 269–273 (1994).
  13. P. Tran, “Calculation of the scattering of electromagnetic waves from a two-dimensional perfectly conducting surface using the method of ordered multiple interactions,” Waves Random Media 7, 295–302 (1997).
  14. K. Pak, L. Tsang, and J. T. Johnson, “Numerical simulations and backscattering enhancement of electromagnetic waves from two-dimensional dielectric random rough sur-faces with the sparse-matrix canonical grid method,” J. Opt. Soc. Am. A 14, 1515–1529 (1997).
  15. F. Chen, “Computer simulation of wave scattering from three-dimensional conducting random surfaces,” Int. J. Remote Sens. 21, 777–790 (2000).
  16. P. J. Chandley, “Determination of the autocorrelation function of height on a rough surface from coherent light scattering,” Opt. Quantum Electron. 8, 329–333 (1976).
  17. W. T. Welford, “Optical estimation of statistics of surface roughness from light scattering measurements,” Opt. Quantum Electron. 9, 269–287 (1977).
  18. P. J. Chandley, “Determination of the probability density function of height on a rough surface from far-field coherent light scattering,” Opt. Quantum Electron. 11, 413–418 (1979).
  19. J. M. Elson and J. M. Bennett, “Relation between the angular dependence of scattering and the statistical properties of optical surfaces,” J. Opt. Soc. Am. 69, 31–47 (1979).
  20. J. C. Stover, S. A. Serati, and C. H. Guillespie, “Calculation of surface statistics from light scatter,” Opt. Eng. 23, 406–412 (1984).
  21. V. Malyshkin, S. Simeonov, A. R. McGurn, and A. A. Maradudin, “Determination of surface profile statistics from electromagnetic scattering data,” Opt. Lett. 22, 58–60 (1997).
  22. R. T. Marchand and G. S. Brown, “Inferring rough surface parameters from average scattering data using approximate scattering models. 1. Gaussian spectrum,” Radio Sci. 33, 821–834 (1998).
  23. R. T. Marchand and G. S. Brown, “Inferring rough surface parameters from average scattering data using approximate scattering models. 2. Pierson–Moskowitz spectrum,” Radio Sci. 33, 835–843 (1998).
  24. R. J. Wombell and J. A. DeSanto, “Reconstruction of rough-surface profiles with the Kirchhoff approximation,” J. Opt. Soc. Am. A 8, 1892–1897 (1991).
  25. R. J. Wombell and J. A. DeSanto, “The reconstruction of shallow rough-surfaces profiles from scattered field data,” Inverse Probl. 7, L7–L12 (1991).
  26. J. C. Quartel and C. J. R. Sheppard, “Surface reconstruc-tion using an algorithm based on confocal imaging,” J. Mod. Opt. 43, 469–486 (1996).
  27. J. C. Quartel and C. J. R. Sheppard, “A surface reconstruction algorithm based on confocal interferometric profiling,” J. Mod. Opt. 43, 591–605 (1996).
  28. K. Harada and A. Noguchi, “Reconstruction of two dimensional rough surface with Gaussian beam illumination,” IEICE Trans. Electron. E79-C, 1345–1349 (1996).
  29. N. Destouches, C. Guérin, M. Lequime, and H. Giovaninni, “Determination of the phase of the diffracted field in the optical domain. Application to the reconstruction of surface profiles,” Opt. Commun. 198, 233–239 (2001).
  30. E. I. Thorsos and D. R. Jackson, “The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 86, 261–277 (1989).
  31. E. I. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83, 78–92 (1988).
  32. E. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1999), p. 485.
  33. C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
  34. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).
  35. T. Wilson, ed., Confocal Microscopy (Academic, New York, 1990).
  36. D. K. Hamilton and C. J. R. Sheppard, “A confocal interference microscope,” Opt. Acta 29, 1573–1577 (1982).
  37. T. R. Michel, M. E. Knotts, and K. A. O’Donnell, “Stokes matrix of a one-dimensional perfectly conducting rough surface,” J. Opt. Soc. Am. A 9, 585–596 (1992).
  38. J. F. Aguilar, M. Lera, and C. J. R. Sheppard, “Imaging of spheres and surface profiling by confocal microscopy,” Appl. Opt. 39, 4621–4628 (2000).
  39. I. J. Cox, D. K. Hamilton, and C. J. R. Sheppard, “Observation of optical signatures of materials,” Appl. Phys. Lett. 41, 604–606 (1982).
  40. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), p. 550.
  41. J. C. Dainty, Laser Speckle and Related Phenomena, 2nd ed. (Springer-Verlag, Berlin, 1984), pp. 342, 485.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited