OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 11 — Nov. 1, 2002
  • pp: 2194–2202

Hybrid diffraction tomography without phase information

Greg Gbur and Emil Wolf  »View Author Affiliations


JOSA A, Vol. 19, Issue 11, pp. 2194-2202 (2002)
http://dx.doi.org/10.1364/JOSAA.19.002194


View Full Text Article

Enhanced HTML    Acrobat PDF (219 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a hybrid tomographic method, based on recent investigations concerning the connection between computed tomography and diffraction tomography, that allows direct reconstruction of scattering objects from intensity measurements. This technique is noniterative and is intuitively easier to understand and easier to implement than some other methods described in the literature. The manner in which the new method reduces to computed tomography at short wavelengths is discussed. Numerical examples of reconstructions are presented.

© 2002 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(290.3200) Scattering : Inverse scattering

Citation
Greg Gbur and Emil Wolf, "Hybrid diffraction tomography without phase information," J. Opt. Soc. Am. A 19, 2194-2202 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-11-2194


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  2. G. T. Herman, Image Reconstruction from Projections (Academic, Orlando, Fla., 1980).
  3. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).
  4. E. Wolf, “Principles and development of diffraction tomography,” in Trends in Optics, A. Consortini, ed. (Academic, San Diego, Calif., 1996), pp. 83–110.
  5. Some of the earliest work is described in G. N. Hounsfield, “Computerized transverse axial scanning (tomography): part I. Description of system,” Br. J. Radiol. 46, 1016–1022 (1973). [CrossRef] [PubMed]
  6. A historical account of the medical development of computerized tomography is given in S. Webb, From the Watching of Shadows (Hilger, Bristol, UK, 1990).
  7. M. G. Raymer, M. Beck, D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994). [CrossRef] [PubMed]
  8. C. Iaconis, I. A. Walmsley, “Direct measurement of the two-point correlation function,” Opt. Lett. 21, 1783–1785 (1996). [CrossRef] [PubMed]
  9. M. H. Maleki, A. J. Devaney, “Phase-retrieval and intensity-only reconstruction algorithms for optical diffraction tomography,” J. Opt. Soc. Am. A 10, 1086–1092 (1993). [CrossRef]
  10. J. Cheng, S. Han, “Diffraction tomography reconstruction algorithms for quantitative imaging of phase objects,” J. Opt. Soc. Am. A 18, 1460–1464 (2001). [CrossRef]
  11. P. S. Carney, E. Wolf, G. S. Agarwal, “Diffraction tomography using power extinction measurements,” J. Opt. Soc. Am. A 16, 2643–2648 (1999). [CrossRef]
  12. A. J. Devaney, “Diffraction tomographic reconstruction from intensity data,” IEEE Trans. Image Process. 1, 221–228 (1992). [CrossRef] [PubMed]
  13. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  14. G. Vdovin, “Reconstruction of an object shape from the near-field intensity of a reflected paraxial beam,” Appl. Opt. 36, 5508–5513 (1997). [CrossRef] [PubMed]
  15. N. Jayshree, G. K. Datta, R. M. Vasu, “Optical tomographic microscope for quantitative imaging of phase objects,” Appl. Opt. 39, 277–283 (2000). [CrossRef]
  16. F. Gori, M. Santarsiero, G. Guattari, “Coherence and the spatial distribution of intensity,” J. Opt. Soc. Am. A 10, 673–679 (1993). [CrossRef]
  17. T. E. Gureyev, A. Roberts, K. A. Nugent, “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12, 1942–1946 (1995). [CrossRef]
  18. G. Gbur, E. Wolf, “Relation between computed tomography and diffraction tomography,” J. Opt. Soc. Am. A 18, 2132–2137 (2001). [CrossRef]
  19. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).
  20. A. J. Devaney, “Diffraction tomography,” in Inverse Methods in Electromagnetic Imaging, Part 2, W. M. Boerner, ed. (Reidel, Boston, Mass., 1985), pp. 1107–1135.
  21. M. A. Anastasio, X. Pan, “Computationally efficient and statistically robust image reconstruction in three-dimensional diffraction tomography,” J. Opt. Soc. Am. A 17, 391–400 (2000). [CrossRef]
  22. G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic, New York, 1985).
  23. B. A. Fuks, Introduction to the Theory of Analytic Functions of Several Complex Variables (American Mathematical Society, Providence, R.I., 1963).
  24. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1964), Vol. 1.
  25. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited